Abstract:
A method of fabricating multi Vth devices and the resulting device are disclosed. Embodiments include forming a high-k dielectric layer over a substrate; forming a first TiN layer, a first barrier layer, a second TiN layer, a second barrier layer, and a third TiN layer consecutively over the high-k dielectric layer; forming a first masking layer over the third TiN layer in a first region; removing the third TiN layer in second and third regions, exposing the second barrier layer in the second and third regions; removing the first masking layer; removing the exposed second barrier layer; forming a second masking layer over the third TiN layer in the first region and the second TiN layer in the second regions; removing the second TiN layer in the third region, exposing the first barrier layer in the third region; removing the second masking layer; and removing the exposed first barrier layer.
Abstract:
A method can include performing an etching process to define a fin trench having a first depth, the first depth being less that a target height of fin. A method can also include forming a layer to protect sidewalls defining the fin trench. A method can also include performing a second etching process to increase a depth of fin trench.
Abstract:
A semiconductor structure includes a bulk silicon substrate and one or more silicon fins coupled to the bulk silicon substrate. Stress-inducing material(s), such as silicon, are epitaxially grown on the fins into naturally diamond-shaped structures using a controlled selective epitaxial growth. The diamond shaped structures are subjected to annealing at about 750° C. to about 850° C. to increase an area of (100) surface orientation by reshaping the shaped structures from the annealing. Additional epitaxy is grown on the increased (100) area. Multiple cycles of increasing the area of (100) surface orientation (e.g., by the annealing) and growing additional epitaxy on the increased area are performed to decrease the width of the shaped structures, increasing the space between them to prevent them from merging, while also increasing their volume.
Abstract:
A method of forming a logic or memory cell with an epi-RSD width of larger than 1.3x fin pitch and the resulting device are provided. Embodiments include a device including a RSD region formed on each of a plurality of fins over a substrate, wherein the RSD has a width larger than 1.3x fin pitch, a TS formed on the RSD, and an ILD formed over the TS.
Abstract:
The present disclosure relates to semiconductor structures and, more particularly, to variable space mandrel cut for self-aligned double patterning and methods of manufacture. The method includes: forming a plurality of mandrels on a substrate; forming spacers about the plurality of mandrels and exposed portions of the substrate; removing a portion of at least one of the plurality of mandrels to form an opening; and filling in the opening with material.
Abstract:
Methods for forming a semiconductor device having dual Schottky barrier heights using a single metal and the resulting device are provided. Embodiments include a semiconductor substrate having an n-FET region and a p-FET region each having source/drain regions; a titanium silicon (Ti—Si) intermix phase Ti liner on an upper surface of the n-FET region source/drain regions; and titanium silicide (TiSi) forming an upper surface of the p-FET region source/drain regions.
Abstract:
A method of adjusting work-function metal thickness includes providing a structure having a substrate, the substrate including a longitudinally extending array of fins disposed thereon. Spacers are then formed on sidewalls of fins of the array. Pillars are formed between and adjacent the spacers. A gate having dummy gate material is formed over the structure, the gate extending laterally across the spacers and fins of the array. The dummy gate material and spacers are removed from the gate to form work-function (WF) metal trenches defined by the pillars and fins within the gate. The WF metal trenches have a first trench width. A thickness of the pillars is adjusted to provide a second trench width, different from the first trench width, for the WF metal trenches. A WF metal structure is disposed within the WF metal trenches.
Abstract:
A semiconductor structure includes a bulk silicon substrate and one or more silicon fins coupled to the bulk silicon substrate. Stress-inducing material(s), such as silicon, are epitaxially grown on the fins into naturally diamond-shaped structures using a controlled selective epitaxial growth. The diamond shaped structures are subjected to annealing at about 750° C. to about 850° C. to increase an area of (100) surface orientation by reshaping the shaped structures from the annealing. Additional epitaxial material is grown on the increased (100) area. Multiple cycles of increasing the area of (100) surface orientation (e.g., by the annealing) and growing additional epitaxial material on the increased area are performed to decrease the width of the shaped structures, increasing the space between them to prevent them from merging, while also increasing their volume.
Abstract:
Methods for forming FinFET source/drain regions with a single reticle and the resulting devices are disclosed. Embodiments may include forming a first fin and a second fin above a substrate, forming a gate crossing over the first fin and the second fin, removing portions of the first fin and the second fin on both sides the gate, forming silicon phosphorous tops on the first fin and the second fin in place of the portions, removing the silicon phosphorous tops on the first fin, and forming silicon germanium tops on the first fin in place of the silicon phosphorous tops.