Abstract:
The present disclosure generally relates to semiconductor structures and, more particularly, to via and skip via structures and methods of manufacture. The method includes: forming a first metallization layer with a first capping layer over the first metallization layer; forming a second metallization layer with a second capping layer over the second metallization layer; forming a partial skip via structure to the first metallization layer by removing a portion of the first capping layer and the second capping and depositing conductive material in an opening formed in the second metallization layer; forming a third capping layer over the filled partial skip via and the second capping layer; and forming a remaining portion of a skip via structure in alignment with the partial skip via structure by opening the third capping layer to expose the conductive material of the partial skip via.
Abstract:
The present disclosure generally relates to semiconductor structures and, more particularly, to fully aligned via structures having relaxed gapfills and methods of manufacture. The method includes: selectively depositing a capping material on a conductive material within a plurality of interconnect structures to form capped interconnect structures; depositing at least one insulator material over the capped interconnect structures; forming a fully aligned via structure through the at least one insulator material to expose the capping material; filling the fully aligned via structure with an alternative metal; and depositing a metal material on the alternative metal in the fully aligned via structure.
Abstract:
Approaches for providing a narrow diffusion break in a fin field effect transistor (FinFET) device are disclosed. Specifically, the FinFET device is provided with a set of fins formed from a substrate, and an opening formed through the set of fins, the opening oriented substantially perpendicular to an orientation of the set of fins. This provides a FinFET device capable of achieving cross-the-fins insulation with an opening size that is adjustable from approximately 20-30 nm.
Abstract:
One illustrative method disclosed herein includes performing a first etching process to define a via opening in a layer of insulating material, performing at least one process operation to form a sacrificial liner layer on the sidewalls of the via opening, performing a second etching process to define a trench in the layer of insulating material, wherein the sacrificial liner layer is exposed to the second etching process, after performing the second etching process, performing a third etching process to remove the sacrificial liner layer and, after performing the third etching process, forming a conductive structure in at least the via opening and the trench.
Abstract:
Structures for interconnects and methods of forming interconnects. An interconnect opening in a dielectric layer includes a first portion and a second portion arranged over the first portion. A first conductor layer composed of a first metal is arranged inside the first portion of the interconnect opening. A second conductor layer composed of a second metal is arranged inside the second portion of the interconnect opening. The first metal is ruthenium.
Abstract:
Interconnect structures and methods for forming an interconnect structure. First and second metallization structures are formed in an intralayer dielectric layer. The intralayer dielectric layer is removed to form a cavity with an entrance between the first and second metallization structures. A dielectric layer is deposited on surfaces surrounding the cavity, over the first metallization structure, and over the second metallization structure. A sacrificial material is formed inside the cavity after the dielectric layer is deposited. A cap layer is deposited on the dielectric layer over the first metallization structure, the dielectric layer over the second metallization structure, and the sacrificial material inside the cavity to close the entrance to the cavity. After the cap layer is deposited, the sacrificial material is removed from the cavity. The dielectric layer and cap layer cooperate to encapsulate an air gap inside the cavity.
Abstract:
The present disclosure generally relates to semiconductor structures and, more particularly, to fully aligned via structures having relaxed gapfills and methods of manufacture. The method includes: selectively depositing a capping material on a conductive material within a plurality of interconnect structures to form capped interconnect structures; depositing at least one insulator material over the capped interconnect structures; forming a fully aligned via structure through the at least one insulator material to expose the capping material; filling the fully aligned via structure with an alternative metal; and depositing a metal material on the alternative metal in the fully aligned via structure.
Abstract:
The disclosure is directed to methods of identifying a space within an integrated circuit structure as a mandrel space or a non-mandrel space. One method may include: identifying a space between freestanding spacers as being one of: a former mandrel space created by removal of a mandrel from between the freestanding spacers or a non-mandrel space between adjacent mandrels prior to removal of the mandrel, based on a line width roughness of the space, wherein the line width roughness represents a deviation of a width of the space from a centerline axis along a length of the space.
Abstract:
One illustrative device disclosed herein includes, among other things, a semiconductor substrate, a fin structure, a gate structure positioned around a portion of the fin structure in the channel region of the device, spaced-apart portions of a second semiconductor material positioned vertically between the fin structure and the substrate, wherein the second semiconductor material is a different semiconductor material than that of the fin, and a local channel isolation material positioned laterally between the spaced-apart portions of the second semiconductor material and vertically below the fin structure and the gate structure, wherein the local channel isolation material is positioned under at least a portion of the channel region of the device.
Abstract:
One method disclosed includes performing a selective etching process through a gate cavity to selectively remove a portion of a first semiconductor material relative to a second layer of a second semiconductor material and a substrate so as to thereby define a space between the second semiconducting material and the substrate, filling substantially all of the space with an insulating material so as to thereby define a substantially self-aligned channel isolation region positioned under at least what will become the channel region of the FinFET device.