Abstract:
A methodology and associated wafer level assembly of testing crackstop structure designs. The wafer level semiconductor assembly includes: a substrate structure shaped to define a set of horizontal directions; a metallization layer located on top of the substrate structure, with the metallization layer including a crackstop structure formed therein in accordance with a crackstop structure design; and a tensioned layer located on top of the metallization layer, with the tensioned layer being made of material having internal tensile forces oriented in the horizontal directions. The tensile forces promote horizontal direction crack propagation in the metallization layer so that the crackstop structure design can be tested more rigorously and reliably before deciding on the crackstop design structure to put into mass production (which mass produced product would typically not include the tensioned layer).
Abstract:
A semiconductor package, e.g., wafer, chip, interposer, etc. includes a multi terminal capacitor within an input output (IO) path. The multi terminal capacitor is electrically attached directly upon a first IO contact of the semiconductor package. There is no inductance between the multi terminal capacitor and an interconnect that electrically connects the first IO contact with a second IO contact of a second semiconductor package and no inductance between the multi terminal capacitor and the first IO contact. The multi terminal capacitor may serve as a power source to cycle the turning on and off of the various circuits within a semiconductor chip associated with the semiconductor package. Because the distance between the multi terminal capacitor and semiconductor chip is reduced, inductance within the system is resultantly reduced. The multi terminal capacitor may be a decoupling capacitor that decouples one part of semiconductor chip from another part of semiconductor chip.
Abstract:
In one embodiment of the present invention, inert nano-sized particles having dimensions from 1 nm to 1,000 nm are added into a solder ball. The inert nano-sized particles may comprise metal oxides, metal nitrides, metal carbides, metal borides, etc. The inert nano-sized particles may be a single compound, or may be a metallic material having a coating of a different material. In another embodiment of the present invention, a small quantity of at least one elemental metal that forms stable high melting intermetallic compound with tin is added to a solder ball. The added at least one elemental metal forms precipitates of intermetallic compounds with tin, which are dispersed as fine particles in the solder.
Abstract:
A multi-layer pillar and method of fabricating the same is provided. The multi-layer pillar is used as an interconnect between a chip and substrate. The pillar has at least one low strength, high ductility deformation region configured to absorb force imposed during chip assembly and thermal excursions.
Abstract:
An integrated circuit (IC) device, e.g., wafer, chip, die, interposer, carrier, etc., includes a patterned mask that includes a first opening that exposes a signal region of a first contact. The mask further includes a second opening that exposes a signal region of a second contact that neighbors the first contact. The mask further includes a first capacitor tab opening that extends from the first opening toward the second contact and further exposes an extension region of the first contact. The mask further includes a second capacitor tab opening that extends from the second opening toward the first contact and further exposes an extension region of the second contact. A multi terminal capacitor may be connected to the IC device such that a first terminal is connected to the extension region of the first contact and a second terminal is connected to the extension region of the second contact.
Abstract:
A semiconductor package, e.g., wafer, chip, interposer, etc., includes a multi terminal capacitor within an input output (IO) path. The multi terminal capacitor is electrically attached directly upon a first IO contact of the semiconductor package. There is no inductance between the multi terminal capacitor and a interconnect that electrically connects the first IO contact with a second IO contact of a second semiconductor package and no inductance between the multi terminal capacitor and the first IO contact. The multi terminal capacitor may serve as a power source to cycle the turning on and off of the various circuits within a semiconductor chip associated with the semiconductor package. Because the distance between the multi terminal capacitor and semiconductor chip is reduced, inductance within the system is resultantly reduced. The multi terminal capacitor may be a decoupling capacitor that decouples one part of semiconductor chip from another part of semiconductor chip.
Abstract:
A semiconductor package, e.g., wafer, chip, interposer, etc., includes a multi terminal capacitor within an input output (IO) path. The multi terminal capacitor is electrically attached directly upon a first IO contact of the semiconductor package. There is no inductance between the multi terminal capacitor and an interconnect that electrically connects the first IO contact with a second IO contact of a second semiconductor package and no inductance between the multi terminal capacitor and the first IO contact. The multi terminal capacitor may serve as a power source to cycle the turning on and off of the various circuits within a semiconductor chip associated with the semiconductor package. Because the distance between the multi terminal capacitor and semiconductor chip is reduced, inductance within the system is resultantly reduced. The multi terminal capacitor may be a decoupling capacitor that decouples one part of semiconductor chip from another part of semiconductor chip.
Abstract:
A multi-layer pillar and method of fabricating the same is provided. The multi-layer pillar is used as an interconnect between a chip and substrate. The pillar has at least one low strength, high ductility deformation region configured to absorb force imposed during chip assembly and thermal excursions.
Abstract:
A solder interconnect structure is provided with non-wettable sidewalls and methods of manufacturing the same. The method includes forming a nickel or nickel alloy pillar on an underlying surface. The method further includes modifying the sidewall of the nickel or nickel alloy pillar to prevent solder wetting on the sidewall.
Abstract:
A solder interconnect structure is provided with non-wettable sidewalls and methods of manufacturing the same. The method includes forming a nickel or nickel alloy pillar on an underlying surface. The method further includes modifying the sidewall of the nickel or nickel alloy pillar to prevent solder wetting on the sidewall.