摘要:
A domed plasma reactor chamber uses an antenna driven by RF energy (LF, MF, or VHF) which is inductively coupled inside the reactor dome. The antenna generates a high density, low energy plasma inside the chamber for etching metals, dielectrics and semiconductor materials. Auxiliary RF bias energy applied to the wafer support cathode controls the cathode sheath voltage and controls the ion energy independent of density. Various magnetic and voltage processing enhancement techniques are disclosed, along with etch processes, deposition processes and combined etch/deposition processed. The disclosed invention provides processing of sensitive devices without damage and without microloading, thus providing increased yields.
摘要:
The invention is embodied in an RF plasma reactor for processing a semiconductor workpiece, including wall structures for containing a plasma therein, a workpiece support, a coil antenna capable of receiving a source RF power signal and being juxtaposed near the chamber, the workpiece support including a bias electrode capable of receiving a bias RF power signal, and first and second magnet structures adjacent the wall structure and in spaced relationship, with one pole of the first magnet structure facing an opposite pole of the second magnet structure, the magnet structures providing a plasma-confining static magnetic field adjacent said wall structure. The invention is also embodied in an RF plasma reactor for processing a semiconductor workpiece, including one or more wall structures for containing a plasma therein, a workpiece support, the workpiece support comprising a lower electrode, an upper electrode facing the lower electrode and spaced across a plasma generation region of said chamber from said lower electrode, and first and second magnet structures adjacent the wall structure and in spaced relationship with one pole of the first magnet structure facing an opposite pole of the second magnet structure, the magnet structures providing a plasma-confining static magnetic field adjacent said wall structure.
摘要:
A general method of the invention is to provide a polymer-hardening precursor piece (such as silicon, carbon, silicon carbide or silicon nitride, but preferably silicon) within the reactor chamber during an etch process with a fluoro-carbon or fluoro-hydrocarbon gas, and to heat the polymer-hardening precursor piece above the polymerization temperature sufficiently to achieve a desired increase in oxide-to-silicon etch selectivity. Generally, this polymer-hardening precursor or silicon piece may be an integral part of the reactor chamber walls and/or ceiling or a separate, expendable and quickly removable piece, and the heating/cooling apparatus may be of any suitable type including apparatus which conductively or remotely heats the silicon piece.
摘要:
A domed plasma reactor chamber uses an antenna driven by RF energy (LF, MF, or VHF) which is inductively coupled inside the reactor dome. The antenna generates a high density, low energy plasma inside the chamber for etching metals, dielectrics and semiconductor materials. Auxiliary RF bias energy applied to the 10 wafer support cathode controls the cathode sheath voltage and controls the ion energy independent of density. Various magnetic and voltage processing enhancement techniques are disclosed, along with etch processes deposition processes and combined etch/deposition processed. The disclosed invention provides processing of sensitive devices without damage and without microloading, thus providing increased yields.
摘要:
A domed plasma reactor chamber uses an antenna driven by RF energy (LF, MF, or VHF) which is inductively coupled inside the reactor dome. The antenna generates a high density, low energy plasma inside the chamber for etching metals, dielectrics and semiconductor materials. Auxiliary RF bias energy applied to the wafer support cathode controls the cathode sheath voltage and controls the ion energy independent of density. Various magnetic and voltage processing enhancement techniques are disclosed, along with etch processes, deposition processes and combined etch/deposition processed. The disclosed invention provides processing of sensitive devices without damage and without microloading, thus providing increased yields.
摘要:
A method of etching an oxide over a nitride with high selectivity comprising plasma etching the oxide with a carbon and fluorine-containing etchant gas in the presence of a scavenger for fluorine, thereby forming a carbon-rich polymer which passivates the nitride. This polymer is inert to the plasma etch gases and thus provides high selectivity to the etch process.
摘要:
A method for protecting a selected area of a substrate against deposition on the selected area. The method includes the steps of flowing a process gas into a substrate processing chamber and flowing a purge gas to the selected area of the substrate to prevent the process gas from contacting the selected area or minimize contact between the process gas and the selected area. In various embodiments the selected area is a backside periphery of the substrate or the edge of the substrate. Also in these embodiments, the process gas is flowed into a deposition zone in order to deposit a thin film layer over an upper surface of the substrate, and a flow of the process and purge gas is established such that the process gas flows radically across the upper surface of the substrate, combines with the purge gas near an edge of the substrate and exits the processing chamber through an exhaust system.
摘要:
A substrate processing reactor capable of thermal CVD, plasma-enhanced CVD, plasma-assisted etchback, plasma self-cleaning and other substrate processing operations all of which can either be performed separately or as part of in-situ multiple step processing. The reactor incorporates a uniform radial gas pumping system which enables uniform reactant gas flow across the wafer. Also included are upper and lower purge gas dispersers. The upper purge gas disperser directs purge gas flow downwardly toward the periphery of the wafer while the lower gas disperser directs purge gas across the backside of the wafer. The radial pumping gas system and purge gas dispersers sweep radially away from the wafer to prevent deposition external to the wafer and keep the chamber clean.
摘要:
A high pressure, high throughput, single wafer, semiconductor processing reactor is disclosed which is capable of thermal CVD, plasma-enhanced CVD, plasma-assisted etchback, plasma self-cleaning, and deposition topography modification by sputtering, either separately or as part of in-situ multiple step processing. The reactor includes cooperating arrays of interdigitated susceptor and wafer support fingers which collectively remove the wafer from a robot transfer blade and position the wafer with variable, controlled, close parallel spacing between the wafer and the chamber gas inlet manifold, then return the wafer to the blade. A combined RF/gas feed-through device protects against process gas leaks and applies RF energy to the gas inlet manifold without internal breakdown or deposition of the gas. The gas inlet manifold is adapted for providing uniform gas flow over the wafer. Temperature-controlled internal and external manifold surfaces suppress condensation, premature reactions and decomposition and deposition on the external surfaces. The reactor also incorporates a uniform radial pumping gas system which enables uniform reactant gas flow across the wafer and directs purge gas flow downwardly and upwardly toward the periphery of the wafer for sweeping exhaust gases radially away from the wafer to prevent deposition outside the wafer and keep the chamber clean. The reactor provides uniform processing over a wide range of pressures including very high pressures. A low temperature CVD process for forming a highly conformal layer of silicon dioxide is also disclosed. The process uses very high chamber pressure and low temperature, and TEOS and ozone reactants. The low temperature CVD silicon dioxide deposition step is particularly useful for planarizing underlying stepped dielectric layers, either alone or in conjunction with a subsequent isotropic etch. A preferred in-situ multiple-step process for forming a planarized silicon dioxide layer uses (1) high rate silicon dioxide deposition at a low temperature and high pressure followed by (2) the deposition of the conformal silicon dioxide layer also at high pressure and low temperature, followed by (3) a high rate isotropic etch, preferably at low temperature and high pressure in the same reactor used for the two oxide deposition steps. Various combinations of the steps are disclosed for different applications, as is a preferred reactor self-cleaning step.
摘要:
A high pressure, high throughput, single wafer, semiconductor processing reactor is disclosed which is capable of thermal CVD, plasma-enhanced CVD, plasma-assisted etchback, plasma self-cleaning, and deposition topography modification by sputtering, either separately or as part of in-situ multiple step processing. A low temperature CVD process for forming a highly conformal layer of silicon dioxide is also disclosed. The process uses very high chamber pressure and low temperature, and TEOS and ozone reactants. The low temperature CVD silicon dioxide deposition step is particularly useful for planarizing underlying stepped dielectric layers, either along or in conjunction with a subsequent isotropic etch. A preferred in-situ multiple-step process for forming a planarized silicon dioxide layer uses (1) high rate silicon dioxide deposition at a low temperature and high pressure followed by (2) the deposition of the conformal silicon dioxide layer also at high pressure and low temperature, followed by (3) a high rate isotropic etch, preferably at low temperature and high pressure in the same reactor used for the two oxide deposition steps. Various combinations of the steps are disclosed for different applications, as is a preferred reactor self-cleaning step.