摘要:
To provide an exhaust gas purifying system for an internal combustion engine capable of executing an optimal regenerative operation by predicting a temperature of an absorbent based on running state information.There are predicted the amount of nitrogen oxides (NO.sub.x) to be absorbed by an absorbent 125 incorporated in a catalyst 124 and the temperature of the absorbent, based on the running state information obtained from a car navigation system 141 or traffic information service receiver 142, and the regenerative operation schedule is determined based on the prediction. Thus, the regenerative operation is conducted at the timing where NO.sub.x has been duly absorbed by the absorbent and the absorbent temperature is lower than a predetermined temperature, so that the leakage of NO.sub.x into the exterior of a vehicle can be restrained.
摘要:
An apparatus for controlling auxiliary equipment driven by an internal combustion engine, which can suppress the deterioration of a specific fuel consumption by controlling the auxiliary equipment based on running environment information provided from a car navigation system or the like. Namely, this apparatus predicts the future maximum output of the internal combustion engine and a running load thereof according to running environment information and vehicle information. Further, if the maximum output is larger than the running load, the auxiliary equipment (for example, a light and an air conditioner) are directly driven by the internal combustion engine. Moreover, surplus energy is stored in an energy storing device. When the maximum output is nearly equal to the running load and that the specific fuel consumption is deteriorated when driving the auxiliary equipments, they are driven by using the energy stored in the energy storing device. Consequently, the deterioration of the fuel consumption ratio due to the operations of the accessories is suppressed.
摘要:
An evaporative fuel processing apparatus which can optimally process fuel gas according to navigation information or the like. This apparatus obtains future running information from a navigation system and further predicts an amount quantity of fuel vapor generated in a fuel tank (13) according to the running information. Further, the apparatus determines an amount of fuel vapor to be purged from a canister (14), namely, a valve opening of a purge control valve (142) so that an amount of fuel vapor adsorbed in the canister (14) is not more than a predetermined upper limit and that an amount of fuel adsorbed in the canister (14) after running is almost zero. Thus, an evaporation emission is reduced and the durability of the canister is prolonged by controlling the purge control valve.
摘要:
An exhaust manifold of an engine is connected to a three way (TW) catalyst, and the TW catalyst is connected to an NH.sub.3 adsorbing and oxidizing (NH.sub.3 -AO) catalyst, such as the Cu-zeolite catalyst. The engine performs the lean and the rich operations alternately and repeatedly. When the engine performs the rich operation, the TW catalyst synthesizes NH.sub.3 from NO.sub.x in the inflowing exhaust gas, and the NH.sub.3 is then adsorbed in the NH.sub.3 -AO catalyst. Next, when the engine performs the lean operation, NO.sub.x passes through the TW catalyst, and the adsorbed NH.sub.3 is desorbed and reduces the inflowing NO.sub.x. When the rich operation is in process, or is to be started, the exhaust gas temperature flowing into the NH.sub.3 -AO catalyst is detected. If the temperature is equal to or higher than the upper threshold representing the rich endurance temperature, the lean or the stoichiometric operation is performed.
摘要:
In the present invention, the No. 1 cylinder of an engine is connected to a first exhaust passage and the No. 2 to No. 4 cylinders are connected to a second exhaust passage. A three-way catalyst and a NO.sub.X absorbent are disposed in the first and second exhaust passage, respectively. A denitrating catalyst is disposed in a common exhaust passage to which the first and second exhaust passage merge. The NO.sub.X absorbent absorbs NO.sub.X when the No. 2 to No. 4 cylinders are operated at a lean air-fuel ratio, and is regenerated, i.e., releases and reduces the absorbed NO.sub.X when the No. 2 to No. 4 cylinders are operated at a rich air-fuel ratio. However, NO.sub.X, without being reduced, is released from the NO.sub.X absorbent during a short period at the beginning of the regenerating operation. In the present invention, the No. 1 cylinder is operated at a rich air-fuel ratio during the short period at the beginning of the regenerating operation in order to produce NH.sub.3 at the three-way catalyst. Therefore, when NO.sub.X without being reduced is released from the NO.sub.X absorbent and flows into the denitrating catalyst on the common exhaust passage, NH.sub.3 produced at the three-way catalyst is also supplied to the denitrating catalyst. Thus, NO.sub.X released from the NO.sub.X absorbent at the beginning of the regenerating operation is reduced at the denitrating catalyst by NH.sub.3 produced at the three-way catalyst.
摘要:
In the present invention, a NO.sub.x absorbent is used for removing the NO.sub.x in the exhaust gas. The NO.sub.x absorbent absorbs NO.sub.x in the exhaust gas when the air-fuel ratio of the exhaust gas is lean, and releases the absorbed NO.sub.x and reduces it to nitrogen when the air-fuel ratio of the exhaust gas is rich or stoichiometric. To prevent the NO.sub.x absorbent from being saturated with the absorbed NO.sub.x, the NO.sub.x absorbent must be regenerated periodically by causing the NO.sub.x in the absorbent to be released and reduced. However, it is found that when the regenerating process by supplying a rich air-fuel ratio exhaust gas to the NO.sub.x absorbent is carried out at high NO.sub.x absorbent temperature, a part of NO.sub.x flows out from the NO.sub.x absorbent at the beginning of the regenerating process without being reduced. In the present invention, this outflow of NO.sub.x is suppressed by, for example, carrying out the regenerating process only when the temperature of the NO.sub.x absorbent is lowered to a predetermined temperature. This predetermined temperature is set low enough to ensure that the amount of the outflow of NO.sub.x is minimized.
摘要:
The exhaust gas purification device according to the present invention utilizes two NOx absorbents in order to remove NOx from the exhaust gas of an engine operated at a lean air-fuel ratio. The NOx absorbents are disposed, in series, in the exhaust passage of the engine and a nozzle for supplying a reducing agent is disposed in the exhaust passage at a position between the two NOx absorbents. Further, the device includes switching valves for changing the direction of the exhaust gas flow in the exhaust gas passage. When the switching valves are set to direct the exhaust gas flow to one direction, the exhaust gas first flows through one of the NOx absorbents (first NOx absorbent), and after passing through the first NOx absorbent, the reducing agent is supplied to the exhaust gas before it flows into the other NOx absorbent (second NOx absorbent). Thus, the first NOx absorbent absorbs NOx in the exhaust gas, and the NOx absorbed by the second NOabsorbent is released from the second NOx absorbent. When the switching valves are switched, the exhaust gas flows in the opposite direction, and flows through the second NOx absorbent and the first NOx absorbent in this order. In this case, the second NOx absorbent absorbs NOx in the exhaust gas, and the NOx absorbed by the first NOx absorbent is released and reduced to N2. Therefore, by reversing the direction of the exhaust gas periodically, the absorbing operation of NOx and releasing/reducing operation of NOx are performed by two NOx absorbents alternately. Thus, it becomes possible to remove NOx in the exhaust gas continuously while the NOx absorbents are prevented from being saturated by the absorbed NOx.
摘要:
An exhaust manifold (7) of an engine (1) is connected to a three way (TW) catalyst (8a), and the TW catalyst (8a) is connected to an NH3 adsorbing and oxidizing (NH3-AO) catalyst (10a). The engine (1) performs the lean and the rich engine operations alternately and repeatedly. When the engine (1) performs the rich operation and thereby the exhaust gas air-fuel ratio of the exhaust gas flowing into the TW catalyst (8a) is made rich, NOx in the inflowing exhaust gas is converted to NH3 in the TW catalyst (8a). The NH3 is then adsorbed in the NH3-AO catalyst (10a). Next, when the engine (1) performs the lean operation and thereby the exhaust gas air-fuel ratio of the exhaust gas flowing into the TW catalyst (8a) is made lean, NOx in the exhausted gas passes through the TW catalyst (8a), and flows into the NH3-AO catalyst (10a). At this time, NH3 adsorbed in the catalyst (10a) is desorbed therefrom, and reduces the inflowing NOx.
摘要:
An NOx occluding and reducing catalyst is disposed in an exhaust gas passage of an internal combustion engine that operates at a lean air-fuel ratio. When the engine is operating at a lean air-fuel ratio, the NOx occluding and reducing catalyst absorbs NOx in the exhaust gas. To release NOx, the engine is operated at a rich air-fuel ratio so that the exhaust gas flowing into the NOx occluding and reducing catalyst acquires a rich air-fuel ratio. While the engine is operated in a region of moderate lean air-fuel ratios of from the stoichiometric air-fuel ratio to an air-fuel ratio of about 20 at the time when the engine operating air-fuel ratio is changing from a lean air-fuel ratio operation to a rich air-fuel ratio operation, an electronic control unit (ECU) of the engine injects secondary fuel, that does not contribute to combustion, into the cylinders of the engine through the direct cylinder fuel injection valves in the expansion stroke or the exhaust stroke of the cylinders, so that the exhaust gas flowing into the NOx occluding and reducing catalyst acquires a rich air-fuel ratio. This prevents unpurified NOx from flowing out of the NOx occluding and reducing catalyst at the time when the engine operating air-fuel ratio is changed.
摘要:
A three-way catalyst (8a) is connected to a first cylinder group 1a. The exhaust gas of the first cylinder group (1a), which has passed through the three-way catalyst (8a), and the exhaust gas of a second cylinder group (1b) are introduced to an exhaust gas purifying catalyst (14). The second cylinder group (1b) performs the lean operation. The first cylinder group (1a) performs the rich operation to synthesize NH.sub.3 from NO.sub.X in the exhaust gas of the first cylinder group (1a) in the three-way catalyst (8a). In the exhaust gas purifying catalyst (14), NO.sub.X in the exhaust gas of the second cylinder group 1b is purified by NH.sub.3 from the three-way catalyst (8a). The amount of HC flowing to the three-way catalyst (8a) is obtained. When the HC amount exceeds a predetermined amount, the first cylinder group 1a must perform the lean operation temporarily, to thereby maintain the excellent catalytic activity of the three-way catalyst (8a).