Abstract:
An integrated circuit has a nonvolatile memory cell that includes a first electrode, a second electrode, and an ion conductive material there-between. At least one of the first and second electrodes has an electrochemically active surface received directly against the ion conductive material. The second electrode is elevationally outward of the first electrode. The first electrode extends laterally in a first direction and the ion conductive material extends in a second direction different from and intersecting the first direction. The first electrode is received directly against the ion conductive material only where the first and second directions intersect. Other embodiments, including method embodiments, are disclosed.
Abstract:
A magnetic cell structure including a nonmagnetic bridge, and methods of fabricating the structure are provided. The magnetic cell structure includes a free layer, a pinned layer, and a nonmagnetic bridge electrically connecting the free layer and the pinned layer. The shape and/or configuration of the nonmagnetic bridge directs a programming current through the magnetic cell structure such that the cross sectional area of the programming current in the free layer of the structure is less than the cross section of the structure. The decrease in the cross sectional area of the programming current in the free layer enables a lower programming current to reach a critical switching current density in the free layer and switch the magnetization of the free layer, programming the magnetic cell.
Abstract:
A slurry for polishing a phase change material, such as Ge—Sb—Te, or germanium-antimony-tellurium (GST), includes abrasive particles of sizes that minimize at least one of damage to (e.g., scratching of) a polished surface of phase change material, an amount of force to be applied during polishing, and a static etch rate of the phase change material, while optionally providing selectivity for the phase change material over adjacent dielectric materials. A polishing method includes applying a slurry with one or more of the above-noted properties to a phase change material, as well as bringing the polishing pad into frictional contact with the phase change material. Polishing systems are disclosed that include a plurality of sources of solids (e.g., abrasive particles) and provide for selectivity in the solids that are applied to a substrate or polishing pad.
Abstract:
Memory devices and methods described are shown that provide improvements, including improved cell isolation for operations such as read and write. Further, methods and devices for addressing and accessing cells are shown that provide a simple and efficient way to manage devices with multiple cells associated with each access transistor. Examples of multiple cell devices include phase change memory devices with multiple cells associated with each access transistor.
Abstract:
Memory devices comprise a plurality of memory cells, each memory cell including a memory element and a selection device. A plurality of first (e.g., row) address lines can be adjacent (e.g., under) a first side of at least some cells of the plurality. A plurality of second (e.g., column) address lines extend across the plurality of row address lines, each column address line being adjacent (e.g., over) a second, opposing side of at least some of the cells. Control circuitry can be configured to selectively apply a read voltage or a write voltage substantially simultaneously to the address lines. Systems including such memory devices and methods of accessing a plurality of cells at least substantially simultaneously are also disclosed.
Abstract:
Some embodiments include methods in which a memory cell is formed to have programmable material between first and second access lines, with the programmable material having two compositionally different regions. A concentration of ions and/or ion-vacancies may be altered in at least one of the regions to change a memory state of the memory cell and to simultaneously form a pn diode. Some embodiments include memory cells having programmable material with two compositionally different regions, and having ions and/or ion-vacancies diffusible into at least one of the regions. The memory cell has a memory state in which the first and second regions are of opposite conductivity type relative to one another.
Abstract:
A variable resistance memory array, programming a variable resistance memory element and methods of forming the array. A variable resistance memory array is formed with a plurality of word line transistors surrounding each phase change memory element. To program a selected variable resistance memory element, all of the bitlines are grounded or biased at the same voltage. A top electrode select line that is in contact with the selected variable resistance memory element is selected. The word line having the word line transistors surrounding the selected variable resistance memory element are turned on to supply programming current to the element. Current flows from the selected top electrode select line through the variable resistance memory element into the common source/drain region of the surrounding word line transistors, across the transistors to the nearest bitline contacts. The word lines are patterned in various lattice configurations.
Abstract:
A magnetic memory cell including a piezoelectric material, and methods of operating the memory cell are provided. The memory cell includes a stack, and the piezoelectric material may be formed as a layer in the stack or adjacent the layers of the cell stack. The piezoelectric material may be used to induce a transient stress during programming of the memory cell to reduce the critical switching current of the memory cell.
Abstract:
A method includes forming an electrical insulator material over an integrated circuit having a metal-containing conductive interconnect and activating a dopant in a semiconductor material of a substrate to provide a doped region. The doped region provides a junction of opposite conductivity types. After activating the dopant, the substrate is bonded to the insulator material and at least some of the substrate is removed where bonded to the insulator material. After the removing, a memory cell is formed having a word line, an access diode, a state-changeable memory element containing chalcogenide phase change material, and a bit line all electrically connected in series, the access diode containing the junction as a p-n junction. A memory device includes an adhesion material over the insulator material and bonding the word line to the insulator material.
Abstract:
A PCRAM cell has a gradated or layered resistivity bottom electrode with higher resistivity closer to a phase change material, to provide partial heating near the interface between the cell and the bottom electrode, preventing separation of the amorphous GST region from the bottom electrode, and reducing the programming current requirements. The bottom electrode can also be tapered to have a smaller cross-sectional area at the top of the bottom electrode than at the bottom of the bottom electrode.