Abstract:
A wiring substrate includes ceramic layers and a conductive member. The ceramic layers have an uppermost ceramic layer and a lowermost ceramic layer. The conductive member includes an upper conductive layer, an internal conductive layer, a lower conductive layer, vias, and a covering layer. The upper conductive layer is disposed on an upper surface of the uppermost ceramic layer. The internal conductive layer is interposed between the ceramic layers. The lower conductive layer is disposed on a lower surface of the lowermost ceramic layer. The vias connect the upper conductive layer, the internal conductive layer, and the lower connective layer. The covering layer covers a portion of the upper conductive layer. The upper conductive layer includes a covered region covered with the covering layer and an element mount region. An upper surface of the element mount region is higher than an upper surface of the covered portion.
Abstract:
A light emitting device has; a light emitting element, a light reflecting member that is disposed so as to cover the lateral surfaces of the light emitting element and expose a top surface of the light emitting element, a frame that is disposed on the light reflecting member so as to surround an outer periphery of the top surface of the light emitting element, a light transmissive member that is disposed inside the frame, and a sealing member that covers the light reflecting member, the frame and the light transmissive member, and that has a flange covering part of the frame.
Abstract:
A method of manufacturing a light emitting device includes: providing on a mounting substrate a soluble member which is soluble in a solvent and which has a lower surface, an upper surface opposite to the lower surface in a height direction, and an outer side surface provided between the lower surface and the upper surface, the lower surface contacting the mounting substrate; providing a light blocking member made of resin to cover the outer side surface of the soluble member so that an inner side wall of the light blocking member contacts the outer side surface of the soluble member; removing the soluble member using the solvent to provide a recess surrounded by the inner side wall of the light blocking member; and mounting a light emitting element in the recess.
Abstract:
A light emitting device has a base body equipped with a base material and a pair of connection terminals disposed from a first main face to a second main face that is on the opposite side from the first main face; a plurality of light emitting elements connected to the connection terminals on the first main face; and a light reflecting member that covers the side faces of the light emitting elements, the base material having a protruding component on the second main face, the protruding component being one of a heat releasing terminal, a reinforcement terminal, and an insulating film, and the connection terminals being disposed on the first main face from the second main face on both sides of the protruding component, and being partly exposed from the light reflecting member on both sides of the first main face.
Abstract:
A method of manufacturing a light emitting device includes: preparing a light-transmissive member including a light reflective sheet that has a through-hole, and a color conversion material layer that is composed of a light-transmissive resin containing a color conversion material and disposed in the through-hole, preparing a light emitting element, fixing the color conversion material layer to the light emitting element, covering a side surface of the light emitting element with a light-reflective member, and cutting the light-reflective member and light-reflective sheet.
Abstract:
A method for manufacturing a light emitting device has: forming a first phosphor layer including a first phosphor that is based on KSF or quantum dots on a light emitting element by a method other than spraying, and forming a second phosphor layer including a second phosphor that is different from the first phosphor on the first phosphor layer by spraying.
Abstract:
A method for manufacturing an optical-semiconductor device, including forming a plurality of first and second electrically conductive members that are disposed separately from each other on a support substrate; providing a base member formed from a light blocking resin between the first and second electrically conductive members; mounting an optical-semiconductor element on the first and/or second electrically conductive member; covering the optical-semiconductor element by a sealing member formed from a translucent resin; and obtaining individual optical-semiconductor devices after removing the support substrate.
Abstract:
A light emitting device includes a base body forming a recess defined by a bottom surface and a side wall thereof, a conductive member whose upper surface being exposed in the recess and whose lower surface forming an outer surface, a protruding portion disposed in the recess, a light emitting element mounted in the recess and electrically connected to the conductive member, and a sealing member disposed in the recess to cover the light emitting element. The base body has a bottom portion and a side wall portion integrally formed of a resin, an inner surface of the side wall portion is the side wall defining the recess and has a curved portion, and the protruding portion is disposed in close vicinity to the curved surface. With this arrangement, a thin and small-sized light emitting device excellent in light extraction efficiency and reliability can be obtained.
Abstract:
A light-emitting device includes a light-emitting element on a molded part. The molded part is formed by molding and curing a thermosetting epoxy resin composition comprising (A) the reaction product of a triazine derived epoxy resin with an acid anhydride, (B) an internal parting agent having m.p. 50-90° C., (C) a reflective agent, (D) an inorganic filler, and (E) a curing catalyst.
Abstract:
A light emitting device includes: a light emitting element; a wavelength conversion member disposed on or above an upper surface of the light emitting element; a light-transmissive member disposed on an upper surface of the wavelength conversion member; and a light reflective member disposed on each side surface of the light emitting element, the wavelength conversion member, and the light-transmissive member, wherein an upper surface of the light reflective member is coplanar with an upper surface of the light-transmissive member, and wherein each of the upper surface of the light reflective member and the upper surface of the light-transmissive member is a cut surface.