Abstract:
In various exemplary embodiments, a method is provided for producing an assembly emitting electromagnetic radiation. In this case, a component composite structure is provided which has components emitting electromagnetic radiation, which components are coupled to one another physically in the component composite structure. In each case at least one component-individual property is imparted to the components. Depending on the determined properties of the components, a structure mask for covering the components in the component composite structure is formed, wherein the structure mask has structure mask cutouts corresponding to the components, which structure mask cutouts are formed in component-individual fashion depending on the properties of the corresponding components. The structure mask cutouts provide phosphor regions, which are exposed in the structure mask cutouts, on the components. Phosphor layers are formed on the phosphor regions of the components.
Abstract:
An optoelectronic semiconductor component includes one or more light-emitting diode chips. The light-emitting diode chip has a main radiation side. A diaphragm is arranged downstream of the main radiation side along a main radiation direction of the light-emitting diode chip. The diaphragm is mounted on or in a component housing. The main radiation side has a mean edge length of at least 50 μm. The diaphragm can be switched from light-impervious to light-pervious. The diaphragm comprises precisely one opening region for radiation transmission. The semiconductor component can be used as a flashlight for a mobile image recording device.
Abstract:
A method for producing an output coupling element and an output coupling element are disclosed. In an embodiment a method includes producing a suspension having quantum dots in a suspension medium, wherein each quantum dot comprises a core having a semiconductor material, directly applying the suspension onto a surface of an optoelectronic component and/or onto a surface of a carrier and removing the suspension medium for producing the output coupling element, wherein the output coupling element is matrix-free and transparent to radiation of a red range and/or a IR range.
Abstract:
A method for producing an optoelectronic component includes creating a first layer of a polymer material. The method also includes applying crystals to a surface of the first layer. The method also includes creating a second layer of a polymer material on the surface of the first layer. The crystals can be between the first and second layers.
Abstract:
A method for producing a multifunctional layer, a method for producing an electrophoresis substrate, and a method for producing a converter plate and an optoelectronic component are disclosed. In an embodiment the method includes providing an electrophoresis substrate comprising a carrier having a front side and a back side, wherein a first electrically conductive layer and a second electrically conductive layer are located on the front side, electrophoretically depositing a first material onto the first electrically conductive layer, electrophoretically depositing a second material onto the second electrically conductive layer and arranging a filler material between the first material and the second material, wherein the filler material forms a common boundary surface with the first material and the second material.
Abstract:
A method for producing an optoelectronic component includes creating a first layer of a polymer material. The method also includes applying crystals to a surface of the first layer. The method also includes creating a second layer of a polymer material on the surface of the first layer. The crystals can be between the first and second layers.
Abstract:
The invention relates to an optoelectronic semiconductor component, which has a carrier element (1), on which an optoelectronic semiconductor chip (2) having at least one active layer is arranged, wherein the active layer is designed to emit or receive light during operation and wherein the semiconductor chip (2) is covered with a protective layer (3) that contains poly-para-xylenes.
Abstract:
What is specified is an optoelectronic component comprising a layer sequence having an active layer, which emits primary electromagnetic radiation, and at least one transparent coupling-out element arranged in the beam path of the primary electromagnetic radiation. The at least one transparent coupling-out element comprises a hybrid material or is produced from a hybrid material.
Abstract:
A method for producing an electronic device and an electronic device are disclosed. In an embodiment a method for producing an electronic device includes attaching semiconductor chips on a carrier, applying a fluoropolymer to main surfaces of the semiconductor chips facing away from the carrier and a main surface of the carrier facing the semiconductor chip thereby forming an encapsulation layer including a fluoropolymer, structuring the encapsulation layer thereby forming cavities in the encapsulation layer and applying a metal layer in the cavities.
Abstract:
A method of producing a light-emitting arrangement includes providing a carrier including a top side, attaching a multitude of first conversion elements on the top side of the carrier, wherein the first conversion elements are arranged in a lateral direction spaced apart from one another, attaching an encapsulation on the top side of the carrier, wherein the encapsulation covers the carrier and the first conversion elements at least sectionally, removing the encapsulation in regions between the first conversion elements, and attaching optoelectronic semiconductor chips between the first conversion elements.