Abstract:
An oxide semiconductor film which has more stable electric conductivity is provided. The oxide semiconductor film comprises a crystalline region. The oxide semiconductor film has a first peak of electron diffraction intensity with a full width at half maximum of greater than or equal to 0.4 nm−1 and less than or equal to 0.7 nm−1 in a region where a magnitude of a scattering vector is greater than or equal to 3.3 nm−1 and less than or equal to 4.1 nm−1. The oxide semiconductor film has a second peak of electron diffraction intensity with a full width at half maximum of greater than or equal to 0.45 nm−1 and less than or equal to 1.4 nm−1 in a region where a magnitude of a scattering vector is greater than or equal to 5.5 nm−1 and less than or equal to 7.1 nm−1.
Abstract:
In a transistor including an oxide semiconductor, a variation in electrical characteristics is suppressed and reliability is improved. A semiconductor device includes a transistor. The transistor includes a first gate electrode, a first insulating film over the first gate electrode, an oxide semiconductor film over the first insulating film, a second insulating film over the oxide semiconductor film, a second gate electrode over the second insulating film, and a third insulating film over the oxide semiconductor film and the second gate electrode. The oxide semiconductor film includes a channel region overlapping with the second gate electrode, a source region in contact with the third insulating film, and a drain region in contact with the third insulating film. The first gate electrode and the second gate electrode are electrically connected to each other. A difference between a minimum value and a maximum value of the field-effect mobility in the case where the field-effect mobility in a saturation region of the transistor is measured.
Abstract:
The on-state characteristics of a transistor are improved and thus, a semiconductor device capable of high-speed response and high-speed operation is provided. A highly reliable semiconductor device showing stable electric characteristics is made. The semiconductor device includes a transistor including a first oxide layer; an oxide semiconductor layer over the first oxide layer; a source electrode layer and a drain electrode layer in contact with the oxide semiconductor layer; a second oxide layer over the oxide semiconductor layer; a gate insulating layer over the second oxide layer; and a gate electrode layer over the gate insulating layer. An end portion of the second oxide layer and an end portion of the gate insulating layer overlap with the source electrode layer and the drain electrode layer.
Abstract:
A method for manufacturing a sputtering target with which an oxide semiconductor film with a small amount of defects can be formed is provided. Alternatively, an oxide semiconductor film with a small amount of defects is formed. A method for manufacturing a sputtering target is provided, which includes the steps of: forming a polycrystalline In-M-Zn oxide (M represents a metal chosen among aluminum, titanium, gallium, yttrium, zirconium, lanthanum, cesium, neodymium, and hafnium) powder by mixing, sintering, and grinding indium oxide, an oxide of the metal, and zinc oxide; forming a mixture by mixing the polycrystalline In-M-Zn oxide powder and a zinc oxide powder; forming a compact by compacting the mixture; and sintering the compact.
Abstract:
A transistor in which a change in characteristics is small is provided. A circuit, a semiconductor device, a display device, or an electronic device in which a change in characteristics of the transistor is small is provided. The transistor includes an oxide semiconductor; a channel region is formed in the oxide semiconductor; the channel region contains indium, an element M, and zinc; the element M is one or more selected from aluminum, gallium, yttrium, tin, boron, silicon, titanium, iron, nickel, germanium, zirconium, molybdenum, lanthanum, cerium, neodymium, hafnium, tantalum, tungsten, and magnesium; a gate insulator contains silicon and oxygen whose atomic number is 1.5 times or more as large as the atomic number of silicon; the carrier density of the channel region is higher than or equal to 1×109 cm−3 and lower than or equal to 5×1016 cm−3; and the energy gap of the channel region is higher than or equal to 2.7 eV and lower than or equal to 3.1 eV.
Abstract:
A semiconductor device includes a gate electrode, a gate insulating film which includes oxidized material containing silicon and covers the gate electrode, an oxide semiconductor film provided to be in contact with the gate insulating film and overlap with at least the gate electrode, and a source electrode and a drain electrode electrically connected to the oxide semiconductor film. In the oxide semiconductor film, a first region which is provided to be in contact with the gate insulating film and have a thickness less than or equal to 5 nm has a silicon concentration lower than or equal to 1.0 at. %, and a region in the oxide semiconductor film other than the first region has lower silicon concentration than the first region. At least the first region includes a crystal portion.
Abstract:
In a liquid crystal display device including a plurality of pixels in a display portion and configured to performed display in a plurality of frame periods, each of the frame periods includes a writing period and a holding period, and after an image signal is input to each of the plurality of pixels in the writing period, a transistor included in each of the plurality of pixels is turned off and the image signal is held for at least 30 seconds in the holding period. The pixel includes a semiconductor layer including an oxide semiconductor layer, and the oxide semiconductor layer has a carrier concentration of less than 1×1014/cm3.
Abstract translation:在包括显示部分中的多个像素并且被配置为在多个帧周期中进行显示的液晶显示装置中,每个帧周期包括写入周期和保持周期,并且在将图像信号输入到每个 在所述写入周期中的所述多个像素中,包括在所述多个像素中的每一个中的晶体管被截止,并且所述图像信号在所述保持周期中保持至少30秒。 像素包括具有氧化物半导体层的半导体层,氧化物半导体层的载流子浓度小于1×10 14 / cm 3。
Abstract:
A semiconductor device includes a first oxide semiconductor film, a second oxide semiconductor film over the first oxide semiconductor film, a source electrode in contact with the second oxide semiconductor film, a drain electrode in contact with the second oxide semiconductor film, a metal oxide film over the second oxide semiconductor film, the source electrode, and the drain electrode, a gate insulating film over the metal oxide film, and a gate electrode over the gate insulating film. The metal oxide film contains M (M represents Ti, Ga, Y, Zr, La, Ce, Nd, or Hf) and Zn. The metal oxide film includes a portion where x/(x+y) is greater than 0.67 and less than or equal to 0.99 when a target has an atomic ratio of M:Zn=x:y.
Abstract:
Defects in an oxide semiconductor film are reduced in a semiconductor device including the oxide semiconductor film. The electrical characteristics of a semiconductor device including an oxide semiconductor film are improved. The reliability of a semiconductor device including an oxide semiconductor film is improved. A semiconductor device including an oxide semiconductor layer; a metal oxide layer in contact with the oxide semiconductor layer, the metal oxide layer including an In-M oxide (M is Ti, Ga, Y, Zr, La, Ce, Nd, or Hf); and a conductive layer in contact with the metal oxide layer, the conductive layer including copper, aluminum, gold, or silver is provided. In the semiconductor device, y/(x+y) is greater than or equal to 0.75 and less than 1 where the atomic ratio of In to M included in the metal oxide layer is In:M=x:y.
Abstract:
In a liquid crystal display device including a plurality of pixels in a display portion and configured to performed display in a plurality of frame periods, each of the frame periods includes a writing period and a holding period, and after an image signal is input to each of the plurality of pixels in the writing period, a transistor included in each of the plurality of pixels is turned off and the image signal is held for at least 30 seconds in the holding period. The pixel includes a semiconductor layer including an oxide semiconductor layer, and the oxide semiconductor layer has a carrier concentration of less than 1×1014/cm3.
Abstract translation:在包括显示部分中的多个像素并且被配置为在多个帧周期中进行显示的液晶显示装置中,每个帧周期包括写入周期和保持周期,并且在将图像信号输入到每个 在所述写入周期中的所述多个像素中,包括在所述多个像素中的每一个中的晶体管被截止,并且所述图像信号在所述保持周期中保持至少30秒。 像素包括具有氧化物半导体层的半导体层,氧化物半导体层的载流子浓度小于1×10 14 / cm 3。