Abstract:
Disclosed herein are a high efficiency light emitting diode and a method of fabricating the same. The light emitting diode includes a semiconductor stacked structure disposed on the support substrate and including a gallium nitride-based p-type semiconductor layer, a gallium nitride-based active layer, and a gallium nitride-based n-type semiconductor layer; and a reflecting layer disposed between the support substrate and the semiconductor stacked structure, wherein the semiconductor stacked structure includes a plurality of protrusions having a truncated cone shape and fine cones formed on top surfaces of the protrusions. By this configuration, light extraction efficiency of the semiconductor stacked structure having low dislocation density can be improved.
Abstract:
Disclosed are a light emitting device and a method of fabricating the same. The light emitting device comprises a substrate. A plurality of light emitting cells are disposed on top of the substrate to be spaced apart from one another. Each of the light emitting cells comprises a first upper semiconductor layer, an active layer, and a second lower semiconductor layer. Reflective metal layers are positioned between the substrate and the light emitting cells. The reflective metal layers are prevented from being exposed to the outside.
Abstract:
A light emitting diode includes: a first conductivity type semiconductor layer; a mesa including an active layer and a second conductivity type semiconductor layer, the mesa having a groove disposed under some region of the first conductivity type semiconductor layer to expose an edge of the first conductivity type semiconductor layer, the groove exposing the first conductivity type semiconductor layer; a first electrode including a first contact portion electrically connected to the first conductivity type semiconductor layer through the groove; a second electrode disposed between the first electrode and the second conductivity type semiconductor layer and electrically connected to the second conductivity type semiconductor layer; and an upper electrode pad disposed adjacent to the first conductivity type semiconductor layer and connected to the second electrode, wherein the groove has a shape surrounding a region including a center of the mesa and partially open.
Abstract:
Disclosed is a light-emitting device. The light-emitting device comprises: a light-emitting structure comprising a first conductive semiconductor layer, a second conductive semiconductor layer, and an active layer disposed between the first conductive semiconductor layer and the second conductive semiconductor layer; a first contact electrode which ohmically contacts the first conductive semiconductor layer; a second contact electrode which is disposed on the second conductive semiconductor layer; and an insulation layer which is disposed on the light-emitting structure and insulates the first contact electrode and the second contact electrode, wherein the light-emitting structure has a non-polar or semi-polar growth surface; the upper surface of the second conductive semiconductor layer comprises a non-polar or semi-polar surface; and the second contact electrode comprises a conductive oxide layer which ohmically contacts the second conductive semiconductor layer, and a reflective electrode layer disposed on the conductive oxide layer.
Abstract:
A high-efficiency light emitting diode including: a semiconductor stack positioned on a support substrate, including a p-type compound semiconductor layer, an active layer, and an n-type compound semiconductor layer; an insulating layer disposed in an opening that divides the p-type compound semiconductor layer and active layer; a transparent electrode layer disposed on the insulating layer and the p-type compound semiconductor layer; a reflective insulating layer covering the transparent electrode layer, to reflect light from the active layer away from the support substrate; a p-electrode covering the reflective insulating layer; and an n-electrode is formed on top of the n-type compound semiconductor layer. The p-electrode is electrically connected to the transparent electrode layer through the insulating layer.
Abstract:
A light emitting diode and a method of fabricating the same, the light emitting diode including: a gallium nitride-based compound semiconductor layer; a first metal layer including Mg and disposed in the form of islands that are in ohmic contact with the gallium nitride-based compound semiconductor layer; a second metal layer including Ni, covering the first metal layer, and contacting the gallium nitride-based compound semiconductor layer between the islands of the first metal layer; and a reflective metal layer covering the second metal layer.
Abstract:
A method of fabricating method light-emitting diode according to an exemplary embodiment of the present invention includes forming a first conductivity-type semiconductor layer, an active layer, and a second conductivity-type semiconductor layer on a first substrate, forming a second substrate on the second conductivity-type semiconductor layer, separating the first substrate from the first conductivity-type semiconductor layer, forming a mask pattern including a plurality of openings on the first conductivity-type semiconductor layer exposed after separating the substrate, etching the first conductivity-type semiconductor layer having the mask pattern disposed thereon to form a plurality of recesses separated from each other, removing the mask pattern, and etching a surface of the first conductivity-type semiconductor layer to form a sub-micro texture.
Abstract:
A method of fabricating method light-emitting diode according to an exemplary embodiment of the present invention includes forming a first conductivity-type semiconductor layer, an active layer, and a second conductivity-type semiconductor layer on a first substrate, forming a second substrate on the second conductivity-type semiconductor layer, separating the first substrate from the first conductivity-type semiconductor layer, forming a mask pattern including a plurality of openings on the first conductivity-type semiconductor layer exposed after separating the substrate, etching the first conductivity-type semiconductor layer having the mask pattern disposed thereon to form a plurality of recesses separated from each other, removing the mask pattern, and etching a surface of the first conductivity-type semiconductor layer to form a sub-micro texture.