Abstract:
Oxide growth of a gate dielectric layer that occurs between processes used in the fabrication of a gate dielectric structure can be reduced. The reduction in oxide growth can be achieved by maintaining the gate dielectric layer in an ambient effective to mitigate oxide growth of the gate dielectric layer between at least two sequential process steps used in the fabrication the gate dielectric structure. Maintaining the gate dielectric layer in an ambient effective to mitigate oxide growth also improves the uniformity of nitrogen implanted in the gate dielectric.
Abstract:
Oxide growth of a gate dielectric layer that occurs between processes used in the fabrication of a gate dielectric structure can be reduced. The reduction in oxide growth can be achieved by maintaining the gate dielectric layer in an ambient effective to mitigate oxide growth of the gate dielectric layer between at least two sequential process steps used in the fabrication the gate dielectric structure. Maintaining the gate dielectric layer in an ambient effective to mitigate oxide growth also improves the uniformity of nitrogen implanted in the gate dielectric.
Abstract:
In a described example, a method for forming a capacitor includes: forming a capacitor first plate over a non-conductive substrate; flowing ammonia and nitrogen gas into a plasma enhanced chemical vapor deposition (PECVD) chamber containing the non-conductive substrate; stabilizing a pressure and a temperature in the PECVD chamber; turning on radio frequency high frequency (RF-HF) power to the PECVD chamber; pretreating the capacitor first plate for at least 60 seconds; depositing a capacitor dielectric on the capacitor first plate; and depositing a capacitor second plate on the capacitor dielectric.
Abstract:
In a described example, an integrated circuit includes a capacitor first plate; a dielectric stack over the capacitor first plate comprising silicon nitride and silicon dioxide with a capacitance quadratic voltage coefficient less than 0.5 ppm/V2; and a capacitor second plate over the dielectric stack.
Abstract:
Oxide growth of a gate dielectric layer that occurs between processes used in the fabrication of a gate dielectric structure can be reduced. The reduction in oxide growth can be achieved by maintaining the gate dielectric layer in an ambient effective to mitigate oxide growth of the gate dielectric layer between at least two sequential process steps used in the fabrication the gate dielectric structure. Maintaining the gate dielectric layer in an ambient effective to mitigate oxide growth also improves the uniformity of nitrogen implanted in the gate dielectric.
Abstract:
Oxide growth of a gate dielectric layer that occurs between processes used in the fabrication of a gate dielectric structure can be reduced. The reduction in oxide growth can be achieved by maintaining the gate dielectric layer in an ambient effective to mitigate oxide growth of the gate dielectric layer between at least two sequential process steps used in the fabrication the gate dielectric structure. Maintaining the gate dielectric layer in an ambient effective to mitigate oxide growth also improves the uniformity of nitrogen implanted in the gate dielectric.
Abstract:
Deposition of lead-zirconium-titanate (PZT) ferroelectric material over iridium metal, in the formation of a ferroelectric capacitor in an integrated circuit. The capacitor is formed by the deposition of a lower conductive plate layer having iridium metal as a top layer. The surface of the iridium metal is thermally oxidized, prior to or during the deposition of the PZT material. The resulting iridium oxide at the surface of the iridium metal is very thin, on the order of a few nanometers, which allows the deposited PZT to nucleate according to the crystalline structure of the iridium metal rather than that of iridium oxide. The iridium oxide is also of intermediate stoichiometry (IrO2-x), and reacts with the PZT material being deposited.
Abstract:
Deposition of lead-zirconium-titanate (PZT) ferroelectric material over iridium metal, in the formation of a ferroelectric capacitor in an integrated circuit. The capacitor is formed by the deposition of a lower conductive plate layer having iridium metal as a top layer. The surface of the iridium metal is thermally oxidized, prior to or during the deposition of the PZT material. The resulting iridium oxide at the surface of the iridium metal is very thin, on the order of a few nanometers, which allows the deposited PZT to nucleate according to the crystalline structure of the iridium metal rather than that of iridium oxide. The iridium oxide is also of intermediate stoichiometry (IrO2-x), and reacts with the PZT material being deposited.
Abstract:
A method forms an integrated circuit, by forming a first conductive member affixed relative to a semiconductor substrate and a second conductive member affixed relative to the semiconductor substrate. The method also forms a ferroelectric member between the first and second conductive members. The ferroelectric member has a first portion including a first atomic ratio of lead (Pb) relative to other materials in the first portion and a second portion including a second atomic ratio of lead relative to other materials in the second portion, the second atomic ratio differing from the first atomic ratio.
Abstract:
In a described example, a method for forming a capacitor includes: forming a capacitor first plate over a non-conductive substrate; flowing ammonia and nitrogen gas into a plasma enhanced chemical vapor deposition (PECVD) chamber containing the non-conductive substrate; stabilizing a pressure and a temperature in the PECVD chamber; turning on radio frequency high frequency (RF-HF) power to the PECVD chamber; pretreating the capacitor first plate for at least 60 seconds; depositing a capacitor dielectric on the capacitor first plate; and depositing a capacitor second plate on the capacitor dielectric.