Abstract:
A semiconductor device having a vertical drain extended MOS transistor may be formed by forming deep trench structures to define vertical drift regions of the transistor, so that each vertical drift region is bounded on at least two opposite sides by the deep trench structures. The deep trench structures are spaced so as to form RESURF regions for the drift region. Trench gates are formed in trenches in the substrate over the vertical drift regions. The body regions are located in the substrate over the vertical drift regions.
Abstract:
A semiconductor device having a vertical drain extended MOS transistor may be formed by forming deep trench structures to define vertical drift regions of the transistor, so that each vertical drift region is bounded on at least two opposite sides by the deep trench structures. The deep trench structures are spaced so as to form RESURF regions for the drift region. Trench gates are formed in trenches in the substrate over the vertical drift regions. The body regions are located in the substrate over the vertical drift regions.
Abstract:
An integrated circuit and method having an extended drain MOS transistor with a buried drift region, a drain end diffused link between the buried drift region and the drain contact, and a concurrently formed channel end diffused link between the buried drift region and the channel, where the channel end diffused link is formed by implanting through segmented areas to dilute the doping to less than two-thirds the doping in the drain end diffused link.
Abstract:
A microelectronic device includes a heat spreader layer on an electrode of a component and a metal interconnect on the heat spreader layer. The heat spreader layer is disposed above a top surface of a substrate of the semiconductor device. The heat spreader layer is 100 nanometers to 3 microns thick, has an in-plane thermal conductivity of at least 150 watts/meter-° K, and an electrical resistivity less than 100 micro-ohm-centimeters.
Abstract:
An integrated circuit containing an extended drain MOS transistor which has a drift layer, an upper RESURF layer over and contacting an upper surface of the drift layer, and a buried drain extension below the drift layer which is electrically connected to the drift layer at the drain end and separated from the drift layer at the channel end. A lower RESURF layer may be formed between the drift layer and the buried drain extension at the channel end. Any of the upper RESURF layer, the drift layer, the lower RESURF layer and the buried drain extension may have a graded doping density from the drain end to the channel end. A process of forming an integrated circuit containing an extended drain MOS transistor which has the drift layer, the upper RESURF layer, and the buried drain extension.
Abstract:
A electronic multi-output device having a substrate including a pad and pins. A composite first chip has a first and a second transistor integrated so that the first terminals of the transistors are merged into a common terminal on one chip surface. Patterned second and third terminals are on the opposite chip surface. The common first terminal is attached to the substrate pad. The second terminals are connected by discrete first and second metal clips to respective substrate pins. A composite second chip has a third and a fourth transistor integrated so that the second terminals of the transistors are merged into a common terminal on one chip surface. Patterned first and third terminals are on the opposite chip surface. The second chip is flipped to be vertically attached with its first terminals to the first and second clips, respectively. The third terminals are connected by discrete clips to respective substrate pins. The common second terminal is connected by a common clip to a substrate pin.
Abstract:
A semiconductor device having a vertical drain extended MOS transistor may be formed by forming deep trench structures to define at least one vertical drift region bounded on at least two opposite sides by the deep trench structures. The deep trench structures include dielectric liners. The deep trench structures are spaced so as to form RESURF regions for the drift region. Vertical gates are formed in vertically oriented gate trenches in the dielectric liners of the deep trench structures, abutting the vertical drift regions. A body implant mask for implanting dopants for the transistor body is also used as an etch mask for forming the vertically oriented gate trenches in the dielectric liners.
Abstract:
A semiconductor device containing a high voltage MOS transistor with a drain drift region over a lower drain layer and channel regions laterally disposed at the top surface of the substrate. RESURF trenches cut through the drain drift region and body region parallel to channel current flow. The RESURF trenches have dielectric liners and electrically conductive RESURF elements on the liners. Source contact metal is disposed over the body region and source regions. A semiconductor device containing a high voltage MOS transistor with a drain drift region over a lower drain layer, and channel regions laterally disposed at the top surface of the substrate. RESURF trenches cut through the drain drift region and body region perpendicular to channel current flow. Source contact metal is disposed in a source contact trench and extended over the drain drift region to provide a field plate.
Abstract:
An integrated circuit containing an extended drain MOS transistor with deep semiconductor (SC) RESURF trenches in the drift region, in which each deep SC RESURF trench has a semiconductor RESURF layer at a sidewall of the trench contacting the drift region. The semiconductor RESURF layer has an opposite conductivity type from the drift region. The deep SC RESURF trenches have depth:width ratios of at least 5:1, and do not extend through a bottom surface of the drift region. A process of forming an integrated circuit with deep SC RESURF trenches in the drift region by etching undersized trenches and counterdoping the sidewall region to form the semiconductor RESURF layer. A process of forming an integrated circuit with deep SC RESURF trenches in the drift region by etching trenches and growing an epitaxial layer on the sidewall region to form the semiconductor RESURF layer.
Abstract:
An integrated circuit containing a dual drift layer extended drain MOS transistor with an upper drift layer contacting a lower drift layer along at least 75 percent of a common length of the two drift layers. An average doping density in the lower drift layer is between 2 and 10 times an average doping density in the upper drift layer. A process of forming an integrated circuit containing a dual drift layer extended drain MOS transistor with a lower drift extension under the body region and an isolation link which electrically isolates the body region, using an epitaxial process. A process of forming an integrated circuit containing a dual drift layer extended drain MOS transistor with a lower drift extension under the body region and an isolation link which electrically isolates the body region, on a monolithic substrate.