Abstract:
A semiconductor device includes a semiconductor substrate, a gate structure, a source region, a drain region, and a plurality of field plates. The gate structure is disposed on the semiconductor substrate. The source region and the drain region are disposed in the semiconductor substrate and located at two opposite sides of the gate structure in a first direction respectively. The field plates are disposed on the semiconductor substrate. Each of the field plates is partly located above the gate structure and partly located between the gate structure and the drain region. The gate structure is electrically connected with at least one of the field plates, and the source region is electrically connected with at least one of the field plates.
Abstract:
A semiconductor structure comprises a substrate having a first conductive type; a deep well having a second conductive type formed in the substrate; a first well having the first conductive type and a second well having the second conductive type both formed in the deep well and the second well spaced apart from the first well; a gate electrode formed on the substrate and disposed between the first and second wells; an isolation extending down from the surface of the substrate and disposed between the gate electrode and the second well; a conductive plug including a first portion and a second portion electrically connected to each other, and the first portion electrically connected to the gate electrode, and the second portion penetrating into the isolation. The bottom surface of the second portion of the conductive plug is covered by the isolation.
Abstract:
The present invention provides a method of fabricating a HV MOS transistor device, including forming a deep well in a substrate, and the deep well; forming a first doped region in the deep well, and the first doped region, wherein a doping concentration of the first doped region and a doping concentration of the deep well in at least one electric field concentration region has a first ratio, the doping concentration of the first doped region and the doping concentration of the deep well outside the electric field concentration region has a second ratio, and the first ratio is greater than the second ratio; and forming a high voltage well in the substrate, and forming a second doped region and a third doped region respectively in the deep well and in the high voltage well.
Abstract:
A high voltage metal-oxide-semiconductor (HV MOS) transistor device includes a substrate, a drifting region formed in the substrate, a plurality of isolation structures formed in the drift region and spaced apart from each other by the drift region, a plurality of doped islands respectively formed in the isolation structures, a gate formed on the substrate, and a source region and a drain region formed in the substrate at respective two sides of the gate. The gate covers a portion of each isolation structure. The drift region, the source region, and the drain region include a first conductivity type, the doped islands include a second conductivity type, and the first conductivity type and the second conductivity type are complementary to each other.
Abstract:
A HV MOS transistor device is provided. The HV MOS transistor device includes a substrate comprising at least an insulating region formed thereon, a gate positioned on the substrate and covering a portion of the insulating region, a drain region and a source region formed at respective sides of the gate in the substrate, and a first implant region formed under the insulating region. The substrate comprises a first conductivity type, the drain, the source, and the first implant region comprise a second conductivity type, and the first conductivity type and the second conductivity type are complementary to each other.
Abstract:
A semiconductor device includes a semiconductor substrate, a gate structure, a source region, a drain region, and a plurality of field plates. The gate structure is disposed on the semiconductor substrate. The source region and the drain region are disposed in the semiconductor substrate and located at two opposite sides of the gate structure in a first direction respectively. The field plates are disposed on the semiconductor substrate. Each of the field plates is partly located above the gate structure and partly located between the gate structure and the drain region. The gate structure is electrically connected with at least one of the field plates, and the source region is electrically connected with at least one of the field plates.
Abstract:
A method for fabricating a transistor includes providing a substrate, having a gate region and a first trench in the substate at a first side of the gate region; forming a first gate insulating layer, disposed on a first portion of the gate region, opposite to the first trench; forming a second gate insulating layer, disposed on a second portion of the gate region and a first portion of the first trench abutting to the gate region, wherein the second gate insulating layer is thicker than the first gate insulating layer; forming a gate layer, disposed on the first and second gate insulating layers, having a downward protruding portion corresponding to the first trench; forming a first doped region in the substrate at least under the first trench; and forming a second doped region in the substrate at a second side of the gate region.
Abstract:
A metal-oxide-semiconductor (MOS) transistor includes a substrate. The substrate has a plurality of trenches extending along a first direction and located on a top portion of the substrate. A gate structure line is located on the substrate and extends along a second direction intersecting with the first direction and crossing over the trenches. A first doped line is located in the substrate, located at a first side of the gate structure line, and crosses over the trenches. A second doped line is located in the substrate, located at a second side of the gate structure line, and crosses over the trenches.
Abstract:
A diode structure includes a rectangular first doping region, and a second doping region surrounds the first doping region wherein the first doping region and the second doping region are separated by a first isolation structure. A third doping region surrounds the second doping region wherein the second doping region and the third doping region are separated by a second isolation structure. The first isolation structure, the second doping region, the second isolation structure and the third doping region are arranged in a quadruple concentric rectangular ring surrounding the first doping region.
Abstract:
A method for fabricating semiconductor device is disclosed. The method includes the steps of: providing a substrate; forming a doped region in the substrate; forming a thermal oxide layer on the substrate and the doped region; removing the thermal oxide layer to form a first recess; forming an epitaxial layer on the substrate and in the first recess; and forming a gate dielectric layer in the epitaxial layer.