Abstract:
A filter system for removing contaminants from oil based industrial liquids and the like includes a support tube with a permeable sidewall through which the industrial liquid flows in an inside out direction. A multilayer coalescence media surrounds the support tube, and includes at least one layer of a non-woven fibrous material that is partially wettable by the dispersed water in the industrial liquid, and commences coalescence of the same to form small primary water droplets, and at least one sheet of a precisely woven monofilament fabric stacked on the downstream side of the non-woven material. The woven fabric is substantially wettable by the dispersed water, and has a fixed open mesh with uniformly sized and spaced apart pore openings which continue to coalesce the primary water droplets into large water drops which fall from the filter for collection along the bottom of the apparatus.
Abstract:
The present invention relates to a method of producing a cellulose-fiber flat structure, the method including obtaining a cellulose-fiber flat structure by filtering a fine cellulose-fiber dispersion containing fine cellulose fibers having an average fiber diameter of 4 to 100 nm, using a filter material having a water permeability of not more than 100 ml/m2·s and an initial tensile modulus of 20 MPa or greater. The present invention is able to produce a cellulose-fiber flat structure by efficiently recovering fine cellulose fibers from a dispersion containing fine cellulose fibers having an average fiber diameter at the nano level. The method of producing a cellulose-fiber flat structure can also be applied to a continuous process.
Abstract translation:纤维素纤维扁平结构体的制造方法技术领域本发明涉及纤维素纤维平坦结构体的制造方法,其特征在于,使用平均纤维直径为4〜100nm的细纤维素纤维的细纤维素纤维分散体, 透水度不大于100ml / m 2·s,初始拉伸弹性模量为20MPa以上的过滤材料。 本发明能够通过从包含平均纤维直径在纳米级的细纤维素纤维的分散体中有效地回收细纤维素纤维而制造纤维素纤维平坦结构。 纤维素纤维平坦结构的制造方法也可以应用于连续工序。
Abstract:
Described is an adsorption filter material, in particular for NBC protective apparel, preferably for wearing next to the skin, in particular as an undergarment (underwear), wherein the adsorption filter material has a multilayered construction, wherein the multilayered construction comprises a first textile sheet material, a second textile sheet material and an adsorption layer disposed between the first and the second textile sheet materials, wherein the adsorption layer includes discrete, in particular grain-shaped, preferably sphere-shaped, sorbent particles, preferably based on activated carbon, adsorbing chemical and/or biological poison and noxiant materials, in particular warfare agents. The adsorption filter material is characterized in that the first textile sheet material and the second textile sheet material are each adapted to be elastic in at least one direction, preferably in both directions, and/or in that the first textile sheet material and the second textile sheet material have at least essentially the same elasticity properties. The adsorption material combines a high wearing comfort with excellent protection with regard to chemical poisons.
Abstract:
A method of making a filter material for producing potable water comprises providing activated carbon particles, depositing one or more nanofilament precursors at least partially onto the surface of the activated carbon particles, agitating the activated carbon particles and deposited nanofilament precursors in the presence of carbonaceous vapor, and heating the activated carbon particles and the deposited nanofilament precursors in the presence of carbonaceous vapor at a temperature and time sufficient to produce the filter material comprising activated carbon particles having carbon nanofilaments on the surface of the particles.
Abstract:
A sorptive-filtration system for removing at least one of negatively or positively charged ions, complexes or particulates from an aqueous stream. The system includes a) flow formed substantially from at least one of rainfall-runoff or snowmelt-runoff; b) a filter containment communicating with the runoff stream such that at least part of the stream passes through the filter containment; and c) a granular filter media disposed within the filter containment, the filter media having an amphoteric material applied thereto, wherein the amphoteric material comprises a metal selected from at least one of Fe, Al, Mn, or Si.
Abstract:
The invention relates to an adsorptive filtering material endowed with integrated particle- and/or aerosol-protection and with protective performance with regard to biological and/or chemical noxiants, in particular biological and/or chemical warfare agents, the adsorptive filtering material having a multilayered construction comprising a support layer, an adsorptive layer associated to and preferably fixed to the support layer, and optionally a covering layer disposed on that side of the adsorptive layer that is remote from the support layer, wherein the adsorptive filtering material is additionally equipped with a particle- and/or aerosol-filtering layer. The adsorptive filtering material is particularly useful in NBC protective materials of any kind (as in protective apparel for example) and for producing filters.
Abstract:
Disclosed are improved polymer materials. Also disclosed are fine fiber materials that can be made from the improved polymeric materials in the form of microfiber and nanofiber structures. The microfiber and nanofiber structures can be used in a variety of useful applications including the formation of filter materials.
Abstract:
Porous nanofiber bearing substrate materials are provided having enhanced surface area for a variety of applications including as electrical substrates, semipermeable membranes and barriers, structural lattices for tissue culturing and for composite materials, and the like.
Abstract:
A method for manufacturing an electrostatic non-woven intake filter, may include a fabric preparation process that weaves at least a kind of fiber fabric into a web, and a filter fabric manufacturing process that weaves the web into a felt that has at least a layer, and manufactures an electrostatic non-woven intake filter material that is a non-woven fabric having a fiber tissue having a semipermanent electrostatic force by allowing a binder and an electrostatic material to permeate the felt.
Abstract:
A multi-layer, fluid transmissive structure is provided that comprises first and second fiber layers each comprising a plurality of polymeric fibers bonded to each other at spaced apart contact points. The polymeric fibers of these fiber layers have diameters greater than one micron and collectively define interconnected interstitial spaces providing tortuous fluid flow paths through the first and second fiber layers. The structure also comprises a plurality of nanofibers disposed intermediate at least a portion of the first fiber layer and at least a portion of the second fiber layer.