Abstract:
A method of converting nitrogen oxides in a gas to nitrogen by contacting the nitrogen oxides with a nitrogenous reducing agent in the presence of a zeolite catalyst containing at least one transition metal, wherein the zeolite is a small pore zeolite containing a maximum ring size of eight tetrahedral atoms, wherein the at least one transition metal is selected from the group consisting of Cr, Mn, Fe, Co, Ce, Ni, Cu, Zn, Ga, Mo, Ru, Rh, Pd, Ag, In, Sn, Re, Ir and Pt.
Abstract:
Provided is a wall-flow filter coated with an SCR catalyst composition, wherein the catalyst composition contains transition metal promoted molecular sieve crystals, and wherein (i) the crystals have a mean crystalline size of about 0.5 μm to about 15 μm, (ii) the crystals are present in said composition as individual crystals, agglomerations having a mean particle size of less than about 15 μm, or a combination of said individual crystals and said agglomerations; and (iii) said molecular sieve is an aluminosilicate or a silico-aluminophosphate of a Framework Type having a maximum ring size of eight tetrahedral atoms.
Abstract:
Aspects of the present invention relates to a copper containing Levyne molecular sieve having a silica to alumina mole ratio less than 30 and a Cu:Al atomic ratio less than 0.45, wherein the Levyne molecular sieve retains at least 60% of its surface area after exposure to a temperature of from about 750° C. to about 950° C. in the present of up to 10 volume percent water vapor for a time ranging from about 1 to about 48 hours.
Abstract:
A catalyst for selective catalytic reduction of NOx having one or more transition metals selected from Cr, Mn, Fe, Co, Ce, Ni, Cu, Zn, Ga, Mo, Ru, Rh, Pd, Ag, In, Sn, Re, Ir, Pt, and mixtures thereof supported on a support, wherein the support has a molecular sieve having at least one intergrowth phase having at least two different small-pore, three-dimensional framework structures.
Abstract:
Certain metal-exchanged SUZ-4 zeolites have been prepared that have catalytic activity for the reduction of NOx in the exhaust of a hydrocarbon or alcohol fueled engine operated under fuel lean conditions. Initially the SUZ-4 zeolite contains alkali metal cations such as Li+, Na+, K+ and/or Cs+. These alkali metal cation-containing zeolites are partially exchanged with at least one of copper (II), silver (I), iron (III) or cobalt (II) ions. The resulting partially exchanged SUZ-4 zeolites display such activity and are stable under extreme hydrothermal aging conditions.
Abstract:
A zeolite, designated NU-85, is an intergrowth of zeolites EU-1 and NU-87. The zeolite is a useful catalyst in a wide variety of hydrocarbon conversion reactions including isomerisation and alkylation.
Abstract:
A method of converting nitrogen oxides in a gas to nitrogen by contacting the nitrogen oxides with a nitrogenous reducing agent in the presence of a zeolite catalyst containing at least one transition metal, wherein the zeolite is a small pore zeolite containing a maximum ring size of eight tetrahedral atoms, wherein the at least one transition metal is selected from the group consisting of Cr, Mn, Fe, Co, Ce, Ni, Cu, Zn, Ga, Mo, Ru, Rh, Pd, Ag, In, Sn, Re, Ir and Pt.
Abstract:
A method of preparing a crystalline STT-type zeolite that has a mole ratio greater than about 15:1 of a tetravalent element oxide to a trivalent element oxide is disclosed along with a gas treatment system that incorporates the STT-type zeolite and a process for treating a gas using the STT-type zeolite. The method generally comprises forming an aqueous mixture comprising a tetravalent element oxide source, a trivalent element oxide source, a source of alkali metal, and an organic structure directing agent; maintaining the mixture under conditions that crystallize crystals of a STT-type zeolite; and recovering the crystals The STT-type zeolite crystals exhibit x-ray diffraction 2-theta degree peaks at: 8.26, 8.58, 9.28, 9.54, 10.58, 14.52, 15.60, 16.43, 17.13, 17.74, 18.08, 18.46, 19.01, 19.70, 20.12, 20.38, 20.68, 21.10, 21.56, 22.20, 22.50, 22.78, 23.36, 23.76, 23.99, 24.54, 24.92, 25.16, 25.58, 25.80, 26.12, 26.94, 27.38, 27.92, 28.30, 28.60, 29.24, 29.48, 30.08, 30.64, 31.20, 31.46, 31.80, 32.02, 32.60, 33.60, and 34.43.