摘要:
To provide a semiconductor optical device which can restrain laser characteristics from being deteriorated by excitation in a substrate mode and can reduce the number of manufacturing steps. A semiconductor optical device comprises a first DBR layer, provided on a semiconductor substrate, having first and second semiconductor layers stacked alternately, a first cladding layer, an active layer, and a second cladding layer. The semiconductor substrate has a bandgap higher than that of the active layer. The first DBR layer is transparent to light having an emission wavelength, while the first and second semiconductor layers have respective refractive indices different from each other. Since the first DBR layer is thus provided between the semiconductor substrate and first cladding layer, the guided light reaching the lower end of the first cladding layer, if any, is reflected by the first DBR layer, whereby light can be restrained from leaking to the semiconductor substrate. This can avoid the substrate-mode excitation, thereby suppressing its resulting laser characteristic deteriorations such as destabilization of oscillation wavelengths.
摘要:
A nitride semiconductor device has a nitride semiconductor layer structure. The structure includes an active layer of a quantum well structure containing an indium-containing nitride semiconductor. A first nitride semiconductor layer having a band gap energy larger than that of the active layer is provided in contact with the active layer. A second nitride semiconductor layer having a band gap energy smaller than that of the first layer is provided over the first layer. Further, a third nitride semiconductor layer having a band gap energy larger than that of the second layer is provided over the second layer.
摘要:
A laser diode includes a substrate having a lattice constant of GaAs or between GaAs and GaP, a first cladding layer of AlGaInP formed on the substrate, an active layer of GaInAsP formed on the first cladding layer, an etching stopper layer of GaInP formed on the active layer, a pair of current-blocking regions of AlGaInP formed on the etching stopper layer so as to define a strip region therebetween, an optical waveguide layer of AlGaInP formed on the pair of current-blocking regions so as to cover the etching stopper layer in the stripe region, and a second cladding layer of AlGaInP formed on the optical waveguide layer, wherein the current-blocking regions having an Al content substantially identical with an Al content of the second cladding layer.
摘要:
A laser diode includes a substrate having a lattice constant of GaAs or between GaAs and GaP, a first cladding layer of AlGaInP formed on the substrate, an active layer of GaInAsP formed on the first cladding layer, an etching stopper layer of GaInP formed on the active layer, a pair of current-blocking regions of AlGaInP formed on the etching stopper layer so as to define a strip region therebetween, an optical waveguide layer of AlGaInP formed on the pair of current-blocking regions so as to cover the etching stopper layer in the stripe region, and a second cladding layer of AlGaInP formed on the optical waveguide layer, wherein the current-blocking regions having an Al content substantially identical with an Al content of the second cladding layer.
摘要:
A semiconductor laser device exhibiting a reduced threshold current with less deterioration in temperature properties in current-optical output performance and excellent beam properties. The semiconductor laser device has a current blocking layer of n-AlInP having a stripe-shaped opening disposed on a first upper cladding layer, the first upper cladding layer and the current blocking layer facing the opening respectively are covered by a buffer layer of p-Al0.7Ga0.5As and a second upper cladding layer of p-(Al0.7Ga0.3)0.5In0.5P is disposed on the buffer layer, to prevent lattice defect formation during growth of a crystalline layer on the surface of the current blocking layer facing the opening.
摘要:
In a method of manufacturing a semiconductor laser which includes a window structure at the periphery of an active layer. The width of the optical waveguide is determined by an etching, and the window structure is formed by an interdiffusion of atoms between a carrier confining layer and the active layer.
摘要:
Semiconductor light emitting devices, lasers and LEDs, are described in which the current flow channel is narrower near the top surface of the device and wider at its bottom near the active region. Also, described are several attenuation masks for fabricating the channels of these devices by particle bombardment.
摘要:
A TJS light emitting diode (laser or LED) comprises an isotype double heterostructure (DH) and a V-groove which penetrates the intermediate layer of the DH. The groove is filled with a region of semiconductor material which enables carrier injection to occur from the region into the intermediate layer, or conversely, depending on the relative bandgaps of the layer and region. Real-refractive index guiding by the groove is described.
摘要:
A semiconductor optical device may include a semiconductor substrate; a compound semiconductor layer on the semiconductor substrate; an additional insulating film on the pedestal portion of the compound semiconductor layer, the additional insulating film having an upper surface and a side surface at an inner obtuse angle between them; a passivation film covering the compound semiconductor layer and the additional insulating film except at least part of the mesa portion, the passivation film having a protrusion raised by overlapping with the additional insulating film; a mesa electrode on the at least part of the mesa portion; a pad electrode on the passivation film within the protrusion; and an extraction electrode on the passivation film, the extraction electrode being continuous within and outside the protrusion, the extraction electrode connecting the pad electrode and the mesa electrode, the extraction electrode being narrower in width than the pad electrode.
摘要:
A laser structure may include a substrate, an active region arranged on the substrate, and a waveguide arranged on the active region. The waveguide may include a first surface and a second surface that join to form a first angle relative to the active region. A material may be deposited on the first surface and the second surface of the waveguide.