Abstract:
A dynamic random access memory (DRAM) array is configured for selective repair and error correction of a subset of the array. Error-correcting code (ECC) is provided to a selected subset of the array to protect a row or partial row of memory cells where one or more weak memory cells are detected. By adding a sense amplifier stripe to the edge of the memory array, the adjacent edge segment of the array is employed to store ECC information associated with the protected subsets of the array. Bit replacement is also applied to defective memory cells. By implementing ECC selectively rather than to the entire array, integrity of the memory array is maintained at minimal cost to the array in terms of area and energy consumption.
Abstract:
Row activation operations within a memory component are carried out with respect to subrows instead of complete storage rows to reduce power consumption. Further, instead of activating subrows in response to row commands, subrow activation operations are deferred until receipt of column commands that specify the column operation to be performed and the subrow to be activated.
Abstract:
In an integrated-circuit image sensor, binary sample values are read out from an array of pixels after successive sampling intervals that collectively span an image exposure interval and include at least two sampling intervals of unequal duration. Each pixel of the array is conditionally reset after each of the successive sampling intervals according to whether the pixel yields a binary sample in a first state or a second state.
Abstract:
A pixel within a pixel array of an integrated-circuit image sensor outputs an analog signal representative of accumulated photocharge. First and second analog-to-digital conversions of the analog signal are initiated while the pixel is outputting the analog signal, the first analog-to-digital conversion corresponding to a low-light range of photocharge accumulation within the pixel and the second analog-to-digital conversion corresponding to a brighter-light range of photocharge accumulation within the pixel.
Abstract:
In a pixel array within an integrated-circuit image sensor, a pixel (870) includes a photodetector (260) and floating diffusion (262) formed within a substrate. First (881) and second (883) gate elements are disposed adjacent one another over a region (885) of the substrate between the photodetector and the floating diffusion and coupled respectively to a row line (TGr) that extends in a row direction within the pixel array and a column line (TGc) that extends in a column direction within the pixel array.
Abstract:
An image sensor architecture with multi-bit sampling is implemented within an image sensor system. A pixel signal produced in response to light incident upon a photosensitive element is converted to a multiple-bit digital value representative of the pixel signal. If the pixel signal exceeds a sampling threshold, the photosensitive element is reset. During an image capture period, digital values associated with pixel signals that exceed a sampling threshold are accumulated into image data.
Abstract:
Embodiments generally relate to a command protocol and/or related circuits and apparatus for communication between a memory device and a memory controller. In one embodiment, the memory controller includes an interface for transmitting commands to the memory device, wherein the memory device includes bitline multiplexers, and accessing of memory cells within the memory device is carried out by a command protocol sequence that includes a wordline selection, followed by bitline selections by the bitline multiplexers. In another embodiment, a memory device includes bitline multiplexers and further includes an interface for receiving a command protocol sequence that specifies a wordline selection followed by bitline selections by the bitline multiplexers.
Abstract:
A memory system supports high-performance and low-power modes. The memory system includes a memory core and a core interface. The memory core employs core supply voltages that remain the same in both modes. Supply voltages and signaling rates for the core interface may be scaled down to save power. Level shifters between the memory core and core interface level shift signals as needed to accommodate the signaling voltages used by the core interface in the different modes.
Abstract:
Embodiments generally relate to integrated circuit devices having through silicon vias (TSVs). In one embodiment, an integrated circuit (IC) device includes a field of TSVs and an address decoder that selectably couples at least one of the TSVs to at least one of a test input and a test evaluation circuit. In another embodiment, a method includes selecting one or more TSVs from a field of TSVs in at least one IC device, and coupling each selected TS V to at least one of a test input and a test evaluation circuit.
Abstract:
A dynamic random access memory (DRAM) device has a hierarchical bitline structure with local bitlines and global bitlines formed on different metal layers. The local bitlines are separated into a plurality of local bitline sections, and bitline isolation switches are configured to connect or disconnect the local bitline sections to or from the global bitlines. As a result, the local bitlines with higher per-length capacitance can be made shorter, since the global bitline with lower per-length capacitance is used to route the signal from the cell capacitances of the memory cells to the remote sense amplifiers.