Abstract:
A method of producing a needle-like diamond structure including the steps of forming a layer of anodized alumina on a diamond substrate, the anodized alumina having a plurality of through holes; vapor-depositing a substance resistant to plasma etching by a vacuum vapor-depositing method to form dots on said diamond substrate, wherein the layer of anodized alumina acts as a mask for the vapor deposition; removing the anodized alumina; and performing a plasma etching treatment while using the dots as a mask, thereby forming regularly-arranged, needle-like diamond columns.
Abstract:
A field emission display in which field emission devices are applied to a flat panel display. A field emission display with diode-type field emitters includes an upper plate and a lower plate, the upper plate and the lower plate are vacuum-packaged in parallel. The lower plate includes a plurality of column signal buses and a plurality of row signal buses, film type field emitters, and switching devices. The column signal buses and the row signal buses are made of metallic material. Pixels are defined by the column signal buses and the row signal buses. A film type field emitter and a switching device are formed inside each pixel. The switching device controls the field emitter on the basis of scan signals and data signals. The scan signals and data signals are loaded to the switching devices through the column signal buses and the row signal buses. The switching device includes at least three electrodes for connection with the column signal bus, the row signal bus, and the field emitter.
Abstract:
A cathode structure comprising a getter material provided with a diamond film. The getter material may include zirconium, vanadium and iron. Cathode structures may have a substantially rounded configuration including a substantially straight portion. Other cathode structures may have a substantially flat portion, with the diamond film covering essentially the entire flat surface. Methods of manufacturing cathode structures may include conditioning the cathode structure by applying a voltage.
Abstract:
An electron-emitting element comprises a diamond substrate, and a diamond protrusion grown on a surface of the diamond substrate so as to have a pointed portion in a form capable of emitting an electron. Since the diamond protrusion formed by growth has a sharply pointed tip portion, it can fully emit electrons. Preferably, the surface of the diamond substrate is a {100} face, and the diamond protrusion is surrounded by {111} faces.
Abstract:
The preparation and use of diamond as an electron emission material is disclosed. Satisfactory measurements were conducted on diamond coatings deposited on WC-Co alloy by a multiple pulsed laser process. The electron emission was measured in a diode configuration with a diamond surface-anode spacing of 20 and 50 &mgr;m in vacuum at P=10−7 Torr. Current densities of 6 mA/cm were calculated at an applied of voltage of 3000 V (for 20 &mgr;m). Analysis proved that electron field emission provided by a diamond grown by a multiple pulsed laser process proved to satisfactorily meet the specified demands.
Abstract:
Diamond microtip field emitters are used in diode and triode vacuum microelectronic devices, sensors and displays. Diamond diode and triode devices having integral anode and grid structures can be fabricated. Ultra-sharp tips are formed on the emitters in a fabrication process in which diamond is deposited into mold cavities in a two-step deposition sequence. During deposition of the diamond, the carbon graphite content is carefully controlled to enhance emission performance. The tips or the emitters are treated by post-fabrication processes to further enhance performance.
Abstract:
Display panels having at least one suspended fibrous cathode containing an electron field emitter are disclosed. The fibrous cathode is supported by a substrate (10) containing two sets of parallel rows of crests and valleys. The first set of parallel crests (11) and valleys (12) provide the valleys along which the fibrous cathode is aligned. The second set of parallel crests (13) and valleys (14) is perpendicular to the first set. The valleys (14) provide the means for suspending the fibrous cathode. The display panels can be produced in large sizes while still maintaining high quality and efficiency.
Abstract:
In an electron-emitting component with a cold cathode comprising a substrate and a cover layer with a diamond-containing material consisting of nano-crystalline diamond having a Raman spectrum with three lines, i.e. at K=1334.+-.4 cm.sup.-1 with a half-width value of 12.+-.6 cm.sup.-1, at K=1140.+-.20 cm.sup.-1 and at K=1470.+-.20 cm.sup.-1, the cold cathode exhibits a low extraction field strength, a stable emission at pressures below 10.sup.-4 mbar, a steep current-voltage characteristic and stable emission currents in excess of 1 microampere/mm.sup.2. The electron emission of the component demonstrates a long-time stability, and a constant intensity of the electron beam across its cross-section.
Abstract:
An amorphous multi-layered structure (100, 200) is formed by a method including the steps of: i) positioning a deposition substrate (101) in a physical vapor deposition apparatus, (300, 400, 500) ii) ionizing a precursor of a multi-phase material within the physical vapor deposition apparatus (300, 400, 500) iv) modulating the total ion impinging energy of the ions to deposit layers having predetermined properties corresponding to the total ion impinging energy values.
Abstract:
The present invention provides an electron emitting device for efficiently emitting electron beams by applying a forward bias to an MIS, pn, and a pin structure using a diamond layer so as to supply electrons from an electron supply layer to a p-type diamond layer. Furthermore, the present invention provides a method for easily and efficiently performing important production processes for producing a highly efficient electron emitting device having a diamond layer and controlling a surface state of the diamond layer. A multi-layer structure including an electrode layer, an electron supply layer and a diamond layer is used as the structure thereof. Alternatively, the electron affinity state of the surface of the diamond layer is arbitrarily controlled by a method such as ultraviolet ray irradiation.