摘要:
Disclosed is a process of making a semiconductor device wherein an insulation layer has a copper plug in contact with the last wiring layer of the device. There may also be a barrier layer separating the copper plug from the insulation layer. There may also be a cap layer over the copper plug to protect it from oxidation. There may also be a dielectric layer over the cap layer.
摘要:
A method creates a structure that comprises a carrier connected to an integrated circuit chip by pillars and openings. Thus, in this structure, at least one conductive pillar extends a distance or height from the surface of the integrated circuit chip and a barrier surrounds the lower portion of the conductive pillar such that the barrier covers at least some portion of the height of the pillar that is closest to the chip surface. There is at least one opening in the carrier that is large enough to accommodate the conductive pillar and the barrier, and the conductive pillar and the barrier are positioned in opening. A solder is used in the bottom of the opening to connect the conductive pillar to the bottom of the opening. The barrier prevents the solder from contacting the portion of the conductive pillar protected by the barrier.
摘要:
The invention is directed to an improved semiconductor chip that reduces crack initiation and propagation into the active area of a semiconductor chip. A semiconductor wafer includes dicing channels that separate semiconductor chips and holes through a portion of a semiconductor chip, which are located at the intersection of the dicing channels. Once diced from the semiconductor wafer, semiconductor chips are created without ninety degree angle corners.
摘要:
Test structures for electrically detecting BEOL failures are provided. In an embodiment, the structure comprises: an input/output connection disposed above a primary conductive pad which is embedded in an insulator; a dielectric layer disposed upon the insulator; a primary via extending through the dielectric layer down to the primary conductive pad for providing electrical connection between the input/output connection and the primary conductive pad; and a secondary via filled with a conductive material in electrical connection with the input/output connection, the secondary via extending through the dielectric layer down to a secondary interconnect in electrical connection with a secondary conductive pad that is insulated from the primary conductive pad.
摘要:
Methods of blocking ionizing radiation to reduce soft errors and resulting IC chips are disclosed. One embodiment includes forming a front end of line (FEOL) for an integrated circuit (IC) chip; and forming at least one back end of line (BEOL) dielectric layer including ionizing radiation blocking material therein. Another embodiment includes forming a front end of line (FEOL) for an integrated circuit (IC) chip; and forming an ionizing radiation blocking layer positioned in a back end of line (BEOL) of the IC chip. The ionizing radiation blocking material or layer absorbs ionizing radiation and reduces soft errors within the IC chip.
摘要:
A method creates a structure that comprises a carrier connected to an integrated circuit chip by pillars and openings. Thus, in this structure, at least one conductive pillar extends a distance or height from the surface of the integrated circuit chip and a barrier surrounds the lower portion of the conductive pillar such that the barrier covers at least some portion of the height of the pillar that is closest to the chip surface. There is at least one opening in the carrier that is large enough to accommodate the conductive pillar and the barrier, and the conductive pillar and the barrier are positioned in opening. A solder is used in the bottom of the opening to connect the conductive pillar to the bottom of the opening. The barrier prevents the solder from contacting the portion of the conductive pillar protected by the barrier.
摘要:
The present invention provides bond pads structures between semiconductor integrated circuits and the chip package with enhanced resistance to fracture and improved reliability. Mismatch in the coefficient of temperature expansion (CTE) among the materials used in bond structures induces stress and shear on them that may result in fractures within the back end dielectric stacks and cause reliability problems of the packaging. By placing multiple metal pads which are connected to the bond pad through multiple metal via, the adhesion between the bond pads and the back end dielectric stacks is enhanced.
摘要:
Test structures for electrically detecting BEOL failures are provided. In an embodiment, the structure comprises: an input/output connection disposed above a primary conductive pad which is embedded in an insulator; a dielectric layer disposed upon the insulator; a primary via extending through the dielectric layer down to the primary conductive pad for providing electrical connection between the input/output connection and the primary conductive pad; and a secondary via filled with a conductive material in electrical connection with the input/output connection, the secondary via extending through the dielectric layer down to a secondary interconnect in electrical connection with a secondary conductive pad that is insulated from the primary conductive pad.
摘要:
Disclosed are embodiments of a far back end of the line solder connector and a method of forming the connector that eliminates the use aluminum, protects the integrity of the ball limiting metallurgy (BLM) layers and promotes adhesion of the BLM layers by incorporating a thin conformal conductive liner into the solder connector structure. This conductive liner coats the top of the via filling in any divots in order to create a uniform surface for BLM deposition and to, thereby, protect the integrity of the BLM layers. The liner further coats the dielectric sidewalls of the well in which the BLM layers are formed in order to enhance adhesion of the BLM layers to the well.
摘要:
The invention is directed to an improved semiconductor chip that reduces crack initiation and propagation into the active area of a semiconductor chip. A semiconductor wafer includes dicing channels that separate semiconductor chips and holes through a portion of a semiconductor chip, which are located at the intersection of the dicing channels. Once diced from the semiconductor wafer, semiconductor chips are created without ninety degree angle corners.