Abstract:
A ceramic micro-truss structure. In one embodiment green state polymer micro-truss structure is formed by exposing a photomonomer resin through a mask to collimated light from three or more directions. The green state polymer micro-truss structure is shaped and post-cured to form a cured polymer micro-truss structure. The cured polymer micro-truss structure is pyrolyzed to form a ceramic micro-truss structure, which may subsequently be coated with metal.
Abstract:
A composition for forming a microlattice structure includes a photopolymerizable compound and a flame retardant material. A microlattice structure includes a plurality of struts interconnected at a plurality of nodes, the struts including: a copolymer including a reaction product of a photopolymerizable compound and a flame retardant material. A microlattice structure includes a plurality of struts interconnected at a plurality of nodes, the struts including: a polymer including a reaction product of a photopolymerizable compound; and a flame retardant material.
Abstract:
Methods of manufacturing a structure having at least one plated region and at least one unplated region. The method includes plating a metal on a polymer structure having a first region accepting the metal and a second region unreceptive to the metal plating. The first region may include fully-cured polymer optical waveguides and the second region may include partially-cured polymer optical waveguides. The first region may include a first polymer composition and the second region may include a second polymer composition different than the first polymer composition.
Abstract:
A three-dimensional micro-truss structure includes: a plurality of first struts extending along a first direction; a plurality of second struts extending along a second direction; a plurality of third struts extending along a third direction; and a plurality of fourth struts extending along a fourth direction, wherein the first, second, third, and fourth struts interpenetrate one another at a plurality of nodes and wherein at least one of the first, second, and third directions extends at a non-perpendicular angle with respect to a plane, the plane being substantially perpendicular to the fourth direction.
Abstract:
A three-dimensional lattice architecture with a thickness hierarchy includes a first surface and a second surface separated from each other with a distance therebetween defining a thickness of the three-dimensional lattice architecture; a plurality of angled struts extending along a plurality of directions between the first surface and the second surface; a plurality of nodes connecting the plurality of angled struts with one another forming a plurality of unit cells. At least a portion of the plurality of angled struts are internally terminated along the thickness direction of the lattice structure and providing a plurality of internal degrees of freedom towards the first or second surface of the lattice architecture.
Abstract:
A curved, three-dimensional, ordered micro-truss structure including a series of first struts extending along a first direction, a series of second struts extending along a second direction, and a series of third struts extending along a third direction. The first, second, and third struts interpenetrate one another at a series of nodes. The series of first struts, second struts, third struts, and nodes form a series of ordered unit cells within the micro-truss structure. The series of ordered unit cells define a curved surface.
Abstract:
A diffraction grating and a method for fabricating the diffraction grating. In one embodiment, a layer of photo-monomer is applied to a substrate and the photomonomer is exposed to a collimated beam of light to form the diffraction grating. The intensity of the collimated beam of light incident on the layer of photo-monomer may have substantially no spatial variation across the first collimated beam of light.
Abstract:
A system and method for forming microlattice structures of large thickness. In one embodiment, a photomonomer resin is secured in a mold having a transparent bottom, the interior surface of which is coated with a mold-release agent. A substrate is placed in contact with the top surface of the photomonomer resin. The photomonomer resin is illuminated from below by one or more sources of collimated light, through a photomask, causing polymer waveguides to form, extending up to the substrate, forming a microlattice structure connected with the substrate. After a layer of microlattice structure has formed, the substrate is raised using a translation-rotation system, additional photomonomer resin is added to the mold, and the photomonomer resin is again illuminated through the photomask, to form an additional layer of microlattice structure. The process is repeated multiple times to form a stacked microlattice structure.
Abstract:
Composite materials with high damping and high stiffness at relatively low density. These materials include three-dimensional structures of interconnected ligaments, which have multiple concentric layers alternating between stiff constraining layers and soft damping layers, so that bulk deformation of the structure results in high local shear strain and correspondingly high bulk damping.