Abstract:
An electronic component mounting substrate includes an electronic component, a printed wiring board that mounts the electronic component thereon, and a cover that accommodates and seals the electronic component mounted on the printed wiring board. The cover has an upper portion and a support portion supporting the upper portion such that the upper portion has a thickness of 2 mm or more, and the printed wiring board includes an upper build-up part and a lower build-up part such that the upper build-up part mounts the electronic component thereon and includes an uppermost resin insulating layer not containing a reinforcing material and that the lower build-up part includes a lowermost resin insulating layer including a reinforcing material.
Abstract:
A motor coil substrate includes a flexible substrate, and coils formed on the flexible substrate. The flexible substrate is wound N times where N is 2 or larger, the coils are formed in a multiple of 3, the flexible substrate includes a first flexible substrate and a second flexible substrate extending from the first flexible substrate and wound around the first flexible substrate, the flexible substrate has a first end and a second end on an opposite side with respect to the first end such that the first flexible substrate has a first end of the flexible substrate, the second flexible substrate is positioned on an outer side of the first flexible substrate, and the coils are formed such that a coil or coils formed on the first flexible substrate partially overlap with a coil or coils formed on the second flexible substrate.
Abstract:
A motor coil substrate includes a coil substrate that is wound in a cylindrical shape and includes a flexible substrate and coils formed on the flexible substrate such that the flexible substrate has a first end and a second end on an opposite side with respect to the first end and that the coils are arrayed from the first end to the second end of the flexible substrate. The coils are formed such that each of the coils has a central space and includes wirings surrounding the central space, and the flexible substrate has openings formed such that each of the openings is penetrating through the flexible substrate and positioned in the central space of a respective one of the coils.
Abstract:
A motor coil substrate includes a flexible substrate, and multiple coils formed on the flexible substrate such that each of the coils has a spiral shape. The flexible substrate has multiple folding lines formed and the multiple coils positioned such that the flexible substrate is folded at the folding lines and wound around a magnet and that an m-th coil and an (m+1)-th coil of the coils partially overlap one another when folded at the folding lines.
Abstract:
A coil includes a resin substrate, a first coil structure formed on a first surface of the resin substrate, a second coil structure formed on a second surface of the resin substrate on the opposite side with respect to the first surface such that the second coil structure is formed at a position corresponding to the first coil structure, a third coil structure formed on the second surface such that the third coil structure is positioned adjacent to the second coil structure, and a fourth coil structure formed on the first surface such that the fourth coil structure is formed at a position corresponding to the third coil structure. The resin substrate is folded such that the second coil structure and the third coil structure oppose each other.
Abstract:
A printed wiring board includes a base substrate, a first insulative resin layer laminated on first surface of the base substrate, and a first conductive layer laminated on the first insulative resin layer. The base substrate includes conductive layers and insulative resin layers, the base substrate, first insulative resin layer and first conductive layer include a high-frequency substrate portion including portion of an outermost conductive layer in the base substrate, portion of the first insulative resin layer and portion of the first conductive layer, the first conductive layer has wiring patterns including microstrip lines and the portion forming the high-frequency substrate portion, the first insulative resin layer has dielectric constant of 3.5 or lower and dielectric loss tangent of 0.005 or lower, and the wiring pattern is formed such that side surfaces of the wiring pattern are substantially parallel to a thickness direction of the first insulative resin layer.
Abstract:
A wiring board with a built-in electronic component includes a substrate having a cavity, an interlayer insulating layer formed on the substrate such that the interlayer insulating layer is covering the cavity of the substrate, a conductor layer formed on the interlayer insulating layer, an electronic component accommodated in the cavity of the substrate and including a rectangular cuboid body and three terminal electrodes such that each of the three terminal electrodes has a metal film form formed on an outer surface of the rectangular cuboid body, and via conductors formed in the interlayer insulating layer such that the via conductors are connecting the conductor layer and the three terminal electrodes of the electronic component. The three terminal electrodes are arrayed in parallel on the outer surface of the rectangular cuboid body such that adjacent terminal electrodes have the opposite polarities.
Abstract:
A wiring board includes a substrate having a laminated-inductor forming portion and including multiple first insulation layers and a second insulation layer formed on a first side of the first insulation layers such that the first insulation layers have the laminated-inductor forming portion, and a planar conductor formed on the second insulation layer of the substrate and formed to shield electromagnetic force generated from the laminated-inductor forming portion of the substrate. The laminated-inductor forming portion of the substrate has multiple inductor patterns formed on the first insulation layers and multiple via conductors connecting the inductor patterns through the first insulation layers, and the inductor patterns include an uppermost inductor pattern formed between the second insulation layer and the first insulation layers such that the uppermost inductor pattern has a distance of 100 μm or more from the planar conductor.
Abstract:
A printed wiring board includes a first core substrate having an opening portion, an inductor component accommodated in the opening portion of the first core substrate, a first buildup layer formed on a first surface of the first core substrate and the inductor component, and a second buildup layer formed on a second surface of the first core substrate and the inductor component on the opposite side with respect to the first surface of the first core substrate. The inductor component has a second core substrate, a buildup layer formed on a surface of the second core substrate and a coil layer formed on the buildup layer, and the second buildup layer has a coil layer and a via conductor connecting the coil layer in the second buildup layer and the coil layer formed on the buildup layer in the inductor component.