Abstract:
A method for defining patterns in an integrated circuit comprises defining a plurality of features in a first photoresist layer using photolithography over a first region of a substrate. The method further comprises using pitch multiplication to produce at least two features in a lower masking layer for each feature in the photoresist layer. The features in the lower masking layer include looped ends. The method further comprises covering with a second photoresist layer a second region of the substrate including the looped ends in the lower masking layer. The method further comprises etching a pattern of trenches in the substrate through the features in the lower masking layer without etching in the second region. The trenches have a trench width.
Abstract:
Methods of fabricating semiconductor structures incorporating tight pitch contacts aligned with active area features and of simultaneously fabricating self-aligned tight pitch contacts and conductive lines using various techniques for defining patterns having sublithographic dimensions. Semiconductor structures having tight pitch contacts aligned with active area features and, optionally, aligned conductive lines are also disclosed, as are semiconductor structures with tight pitch contact holes and aligned trenches for conductive lines.
Abstract:
Different portions of a continuous loop of semiconductor material are electrically isolated from one another. In some embodiments, the end of the loop is electrically isolated from mid-portions of the loop. In some embodiments, loops of semiconductor material, having two legs connected together at their ends, are formed by a pitch multiplication process in which loops of spacers are formed on sidewalls of mandrels. The mandrels are removed and a block of masking material is overlaid on at least one end of the spacer loops. In some embodiments, the blocks of masking material overlay each end of the spacer loops. The pattern defined by the spacers and the blocks are transferred to a layer of semiconductor material. The blocks electrically connect together all the loops. A select gate is formed along each leg of the loops. The blocks serve as sources/drains. The select gates are biased in the off state to prevent current flow from the mid-portion of the loop's legs to the blocks, thereby electrically isolating the mid-portions from the ends of the loops and also electrically isolating different legs of a loop from each other.
Abstract:
Different portions of a continuous loop of semiconductor material are electrically isolated from one another. In some embodiments, the end of the loop is electrically isolated from mid-portions of the loop. In some embodiments, loops of semiconductor material, having two legs connected together at their ends, are formed by a pitch multiplication process in which loops of spacers are formed on sidewalls of mandrels. The mandrels are removed and a block of masking material is overlaid on at least one end of the spacer loops. In some embodiments, the blocks of masking material overlay each end of the spacer loops. The pattern defined by the spacers and the blocks are transferred to a layer of semiconductor material. The blocks electrically connect together all the loops. A select gate is formed along each leg of the loops. The blocks serve as sources/drains. The select gates are biased in the off state to prevent current flow from the mid-portion of the loop's legs to the blocks, thereby electrically isolating the mid-portions from the ends of the loops and also electrically isolating different legs of a loop from each other.
Abstract:
The present disclosure includes memory having a continuous channel, and methods of processing the same. A number of embodiments include forming a vertical stack having memory cells connected in series between a source select gate and a drain select gate, wherein forming the vertical stack includes forming a continuous channel for the source select gate, the memory cells, and the drain select gate, and removing a portion of the continuous channel for the drain select gate such that the continuous channel is thinner for the drain select gate than for the memory cells and the source select gate.
Abstract:
A method used in forming a memory array, comprises forming a substrate comprising a conductive tier, an insulator etch-stop tier above the conductive tier, a select gate tier above the insulator etch-stop tier, and a stack comprising vertically-alternating insulative tiers and wordline tiers above the select gate tier. Etching is conducted through the insulative tiers, the wordline tiers, and the select gate tier to and stopping on the insulator etch-stop tier to form channel openings that have individual bottoms comprising the insulator etch-stop tier. The insulator etch-stop tier is penetrated through to extend individual of the channel openings there-through to the conductive tier. Channel material is formed in the individual channel openings elevationally along the insulative tiers, the wordline tiers, and the select gate tier and is directly electrically coupled with the conductive material in the conductive tier. Structure independent of method is disclosed.
Abstract:
Some embodiments include an integrated structure having a first opening extending through a stack of alternating insulative levels and conductive levels. A nitride structure is within the first opening and narrows the first opening to form a second opening. Detectable oxide is between the nitride structure and one or more of the conductive levels. Some embodiments include an integrated structure having a conductive material, a select device gate material over the conductive material, and vertically-stacked conductive levels over the select device gate material. A first opening extends through the vertically-stacked levels to the conductive material and has opposing sidewalls along a cross-section. Nitride liners are along the sidewalls of the first opening. Detectable oxide is between at least one of the nitride liners and one or more of the vertically-stacked conductive levels. Some embodiments include methods for forming integrated structures.
Abstract:
Embodiments of a method for device fabrication by reverse pitch reduction flow include forming a first pattern of features above a substrate and forming a second pattern of pitch-multiplied spacers subsequent to forming the first pattern of features. In embodiments of the invention the first pattern of features may be formed by photolithography and the second pattern of pitch-multiplied spacers may be formed by pitch multiplication. Other methods for device fabrication are provided.
Abstract:
Some embodiments include a memory array which has a stack of alternating first and second levels. Channel material pillars extend through the stack, and vertically-stacked memory cell strings are along the channel material pillars. A common source is under the stack and electrically coupled to the channel material pillars. The common source has conductive protective material over and directly against metal silicide, with the conductive protective material being a composition other than metal silicide. Some embodiments include methods of fabricating integrated structures.
Abstract:
Some embodiments include a memory array which has a stack of alternating first and second levels. Channel material pillars extend through the stack, and vertically-stacked memory cell strings are along the channel material pillars. A common source is under the stack and electrically coupled to the channel material pillars. The common source has conductive protective material over and directly against metal silicide, with the conductive protective material being a composition other than metal silicide. Some embodiments include methods of fabricating integrated structures.