摘要:
Provided is a base substrate including an orientation layer used for crystal growth of a nitride or oxide of a Group 13 element. A front surface of the orientation layer on a side used for crystal growth is composed of a material having a corundum-type crystal structure having an a-axis length and/or c-axis length larger than that of sapphire. The orientation layer contains a solid solution containing two or more selected from the group consisting of α-Al2O3, α-Cr2O3, α-Fe2O3, α-Ti2O3, α-V2O3, and α-Rh2O3.
摘要:
Provided is a base substrate including an orientation layer used for crystal growth of a nitride or oxide of a Group 13 element, in which a front surface on a side used for the crystal growth of the orientation layer is composed of a material having a corundum-type crystal structure having an a-axis length and/or c-axis length larger than that of sapphire, the orientation layer contains a material selected from the group consisting of α-Cr2O3, α-Fe2O3, α-Ti2O3, α-V2O3, and α-Rh2O3, or a solid solution containing two or more selected from the group consisting of α-Al2O3, α-Cr2O3, α-Fe2O3, α-Ti2O3, α-V2O3, and α-Rh2O3, and a half width of an X-ray rocking curve of a (104) plane of the corundum-type crystal structure is 500 arcsec. or less.
摘要:
Provided is a ground substrate includes an orientation layer used for crystal growth of a nitride or oxide of a Group 13 element. The front surface of the orientation layer on the side used for the crystal growth is composed of a material having a corundum-type crystal structure having an a-axis length and/or c-axis length larger than that of sapphire. A plurality of pores are present in the orientation layer.
摘要:
A SiC composite substrate includes a SiC single crystal layer and at least one biaxially oriented SiC layer. The at least one biaxially oriented SiC layer is disposed on the SiC single crystal. In the biaxially oriented SiC layer, the SiC is oriented in both a c-axis direction and an a-axis direction. The biaxially oriented SiC layer has pores and has a density of defect reaching the surface of 1.0×101/cm2 or less.
摘要:
A method for producing a transparent alumina sintered body according to the present invention includes (a) a step of preparing an alumina raw material powder containing a plate-like alumina powder having an aspect ratio of 3 or more and a fine alumina powder having an average particle diameter smaller than that of the plate-like alumina powder so that, when a mixing ratio of the plate-like alumina powder to the fine alumina powder in terms of mass ratio is assumed to be T:(100−T), T is 0.001 or more and less than 1, and so that a mass ratio R1 of F relative to A1 in the alumina raw material powder is less than 15 ppm; (b) a step of forming a raw material for forming containing the alumina raw material powder into a compact; and (c) a step of sintering the compact so as to obtain a transparent alumina sintered body.
摘要:
A plate-like alumina powder production method of the present invention comprises placing a transition alumina and a fluoride in a container such that the transition alumina and the fluoride do not come into contact with each other and then performing heat treatment to obtain a plate-like α-alumina powder. The transition alumina is preferably at least one selected from the group consisting of gibbsite, boehmite, and γ-alumina. It is preferable that the amount of the fluoride used is set such that the percentage ration of F in the fluoride to the transition alumina is 0.017% by mass or more. The container preferably has a volume such that a value obtained by dividing the mass of F in the fluoride by the volume of the container is 6.5×10−5 g/cm3 or more. The heat treatment is preferably performed at the temperature of 750 to 1,650° C.
摘要:
There is provided a production method which enables stable formation of a p-type zinc oxide film and also is suitable for enlarging the area of the film. The method for producing a p-type zinc oxide film according to the present invention comprises the steps of: placing a target containing a zinc source and a substrate in a gas atmosphere containing a nitrogen source and an oxygen source and having a gas pressure of 0.1 Pa to 100 Pa, and exposing the target to arc discharge, thereby forming a precursor film containing zinc and oxygen on the substrate; and annealing the precursor film in an oxidizing atmosphere, thereby forming a p-type zinc oxide film.
摘要:
Provided is a self-supporting gallium nitride substrate useful as an alternative material for a gallium nitride single crystal substrate, which is inexpensive and also suitable for having a large area. This substrate is composed of a plate composed of gallium nitride-based single crystal grains, wherein the plate has a single crystal structure in the approximately normal direction. This substrate can be manufactured by a method comprising providing an oriented polycrystalline sintered body; forming a seed crystal layer composed of gallium nitride on the sintered body so that the seed crystal layer has crystal orientation mostly in conformity with the crystal orientation of the sintered body; forming a layer with a thickness of 20 μm or greater composed of gallium nitride-based crystals on the seed crystal layer so that the layer has crystal orientation mostly in conformity with crystal orientation of the seed crystal layer; and removing the sintered body.
摘要:
A ceramic member 30 according to the present invention includes a ceramic base 32, which contains a solid solution Mg(Al)O(N) in which Al and N components are dissolved in magnesium oxide as the main phase, and an electrode 34 disposed on a portion of the ceramic base 32 and containing at least one of nitrides, carbides, carbonitrides, and metals as an electrode component. The ceramic base 32 may have an XRD peak of a (111), (200), or (220) plane of Mg(Al)O(N) measured using a CiKα ray at 2θ=36.9 to 39, 42.9 to 44.8, or 62.3 to 65.2 degrees, respectively, between a magnesium oxide cubic crystal peak and an aluminum nitride cubic crystal peak.
摘要:
A rare earth-containing SiC substrate includes a rare earth element and Al. A concentration of the rare earth element is from 1×1016 atoms/cm3 to 1×1019 atoms/cm3 inclusive and a concentration of Al is from 1×1016 atoms/cm3 to 1×1021 atoms/cm3 inclusive.