摘要:
To provide a semiconductor equipment having high heat-transfer effect and breakdown voltage, and a method of manufacturing the same. The semiconductor equipment includes: a sealed container; a stem connected to the sealed container via a stem peripheral portion; and a semiconductor chip mounted on a top surface of the stem, inside the sealed container. The semiconductor chip is electrically connected to a lead provided to the stem, the stem peripheral portion, which is of a material that is different from the material of stem and the same as the material of the sealed container, is bonded along a periphery of the stem, and the sealed container is filled with a working fluid including at least one of ethanol, a perfluorocarbon, and a fluoroether.
摘要:
An object of the invention is to provide a semiconductor device which includes a barrier metal having high adhesiveness and diffusion barrier properties and a method of manufacturing the semiconductor device. The invention provides a semiconductor device manufacturing method including forming a first layer made of a material containing silicon on a base substance; forming a second layer containing metal and nitrogen on the first layer; and exposing the second layer to active species obtained from plasma in an atmosphere including reducing gas.
摘要:
A ballistic semiconductor device of the present invention comprises a n-type emitter layer (102), a base layer (305) made of n-type InGaN, a n-type collector layer (307), an emitter barrier layer (103) interposed between the emitter layer (102) and the base layer (305) and having a band gap larger than that of the base layer (305), and a collector barrier layer (306) interposed between the base layer (305) and the collector layer (307) and having a band gap larger than that of the base layer (305), and operates at 10 GHz or higher.
摘要:
The method for fabricating a nitride semiconductor of the present invention includes the steps of: (1) growing a first semiconductor layer made of a first group III nitride over a substrate by supplying a first group III source and a group V source containing nitrogen; and (2) growing a second semiconductor layer made of a second group III nitride on the first semiconductor layer by supplying a second group III source and a group V source containing nitrogen. At least one of the steps (1) and (2) includes the step of supplying a p-type dopant over the substrate, and an area near the interface between the first semiconductor layer and the second semiconductor layer is grown so that the density of the p-type dopant locally increases.
摘要:
A method of fabricating a compound semiconductor device includes the steps of supplying an amine-adduct of a compound that contains a constituent element of a crystal layer that forms the semiconductor device, to a substrate on which the semiconductor device is formed, as a source material of the crystal layer, decomposing the amine-adduct in the vicinity of the substrate such that the constituent element is released, and depositing the constituent element on the substrate to cause a growth of the crystal layer on the substrate.
摘要:
A ballistic semiconductor device of the present invention comprises a n-type emitter layer (102), a base layer (305) made of n-type InGaN, a n-type collector layer (307), an emitter barrier layer (103) interposed between the emitter layer (102) and the base layer (305) and having a band gap larger than that of the base layer (305), and a collector barrier layer (306) interposed between the base layer (305) and the collector layer (307) and having a band gap larger than that of the base layer (305), and operates at 10 GHz or higher.
摘要:
A semiconductor light emitting device of the present invention comprises a n-type InP substrate (1), and a stripe structure (10) formed in the stripe shape on the n-type InP substrate (1) and comprised of a n-type InP lower cladding layer (3), an active layer (4) having a resonator in a direction parallel to the n-type InP substrate (1), and a p-type InP upper cladding layer (5). The stripe structure (10) has a photonic crystal structure (2) with concave portions 9 arranged in rectangular lattice shape, and the direction in which the concave portions (9) of the photonic crystal structure (2) are arranged corresponds with a resonator direction. A stripe-shaped upper electrode (6) is formed on the stripe structure (10) to extend in the resonator direction. The semiconductor light emitting device of the present invention so structured is configured to radiate light in the direction perpendicular to the n-type InP substrate (1).
摘要:
A plasma oscillation switching device of the present invention comprises semiconductor substrate 101; first barrier layer 103 that is composed of a III-V compound semiconductor and formed on the substrate; channel layer 104 that is composed of a III-V compound semiconductor and formed on the first barrier layer; second barrier layer 105 that is composed of a III-V compound semiconductor and formed on the channel layer; source electrode 107, gate electrode 109 and drain electrode 108 provided on the second barrier layer, wherein the first barrier layer includes n-type diffusion layer 103a, the second barrier layer includes p-type diffusion layer 105a, the band gap of the channel layer is smaller than the band gaps of the first and the second barrier layers, two-dimensional electron gas EG is accumulated at the conduction band at the boundary between the first barrier layer and the channel layer, two-dimensional hole gas HG is accumulated at the valence band at the boundary between the second barrier layer and the channel layer, and these electrodes are formed on the barrier layer through the insulating layer 106.
摘要:
The method for fabricating a nitride semiconductor of the present invention includes the steps of: (1) growing a first semiconductor layer made of a first group III nitride over a substrate by supplying a first group III source and a group V source containing nitrogen; and (2) growing a second semiconductor layer made of a second group III nitride on the first semiconductor layer by supplying a second group III source and a group V source containing nitrogen. At least one of the steps (1) and (2) includes the step of supplying a p-type dopant over the substrate, and an area near the interface between the first semiconductor layer and the second semiconductor layer is grown so that the density of the p-type dopant locally increases.
摘要:
A hetero field effect transistor according to the present invention comprises an InP substrate, a channel layer provided on the InP substrate with a buffer layer disposed between the InP substrate and the channel layer, a spacer layer constituted by a semiconductor having a band gap larger than that of the channel layer formed to hetero-join to the channel layer, and a carrier supply layer formed to be adjacent to the spacer layer, wherein the channel layer comprises a predetermined semiconductor layer constituted by a compound semiconductor represented by a formula GaxIn1−xNyA1−y in which A is As or Sb, composition x satisfies 0≦x≦0.2, and composition y satisfies 0.03≦y≦0.10.
摘要翻译:根据本发明的异质场效应晶体管包括InP衬底,设置在InP衬底上的沟道层,其中缓冲层设置在InP衬底和沟道层之间,间隔层由具有大于 形成为与沟道层异质连接的沟道层的沟道层和与间隔层相邻形成的载流子供给层,其中沟道层包括由式GaxIn1-xNyA1表示的化合物半导体构成的预定半导体层 -Y,其中A为As或Sb,组成x满足0 <= x <= 0.2,组成y满足0.03 <= Y&LE; 0.10。