Abstract:
A structure comprises a substrate having a plateau region and a trench region, a reflecting layer formed over a top surface of the trench region, a first adhesion promoter layer formed over the reflecting layer, a bottom cladding layer deposited over the first adhesion promoter layer, a core layer formed over the bottom cladding layer and a top cladding layer formed over the core layer.
Abstract:
A system and method of etching a semiconductor device are provided. Etching solution is sampled and analyzed by a monitoring unit to determine a concentration of components within the etching solution, such as an oxidant concentration. Then, based upon such measurement, a makeup amount of the components may be added be a makeup unit to the etching solution to control the concentration of the components within the etching system.
Abstract:
An integrated circuit includes a substrate, a metal grating disposed over the substrate, and a waveguide layer disposed over or under the metal grating. The metal grating is arranged to change a propagation direction of an optical signal and the waveguide layer is arranged to guide the optical signal to a desired direction.
Abstract:
A method for forming a field-effect transistor with a raised drain structure is disclosed. The method includes depositing a low-k inter-metal layer over a semiconductor substrate, depositing a porogen-containing low-k layer over the low-k inter-metal layer, and etching a space for the via through the low-k inter-metal layer and the porogen-containing low-k layer. The method further includes depositing a metal layer, a portion of the metal layer filling the space for the via, another portion of the metal layer being over the porogen-containing low-layer, removing the portion of the metal layer over the porogen-containing layer by a CMP process, and curing the porogen-containing low-k layer to form a cured low-k layer.
Abstract:
A method for fabricating a semiconductor structure includes providing a substrate and a first layer over the substrate, wherein the first layer includes one or more overlay marks. The method further includes forming one or more layers on the first layer and performing a dark field (DF) inspection on the one or more overlay marks underlying the one or more layers to receive a post-film-formation data.
Abstract:
Semiconductor device metallization systems and methods are disclosed. In some embodiments, a metallization system for semiconductor devices includes a mainframe, and a plurality of modules disposed proximate the mainframe. One of the plurality of modules comprises a physical vapor deposition (PVD) module and one of the plurality of modules comprises an ultraviolet light (UV) cure module.
Abstract:
An optical element structure and a fabricating process for the same are provided. The optical element fabricating process includes providing a substrate forming thereon a protrusion; and forming an over coating layer over the protrusion and the substrate by a deposition scheme to form an optical element.
Abstract:
A method of fabricating a semiconductor integrated circuit (IC) is disclosed. The method includes receiving a precursor. A decomposable polymer layer (DPL) is deposited between the conductive features of the precursor. The DPL is annealed to form an ordered periodic pattern of different types of polymer nanostructures. One type of polymer nanostructure is decomposed by a first selectively to form a trench. The trench is filled by a dielectric layer to form a dielectric block. The remaining types of polymer nanostructures are decomposed by a second selectively etching to form nano-air-gaps.
Abstract:
An embodiment is a semiconductor device comprising an optical device over a first substrate, a vertical waveguide on a top surface of the optical device, the vertical waveguide having a first refractive index, and a capping layer over the vertical waveguide, the capping layer configured to be a lens for the vertical waveguide and the capping layer having a second refractive index.
Abstract:
A system and method of etching a semiconductor device are provided. Etching solution is sampled and analyzed by a monitoring unit to determine a concentration of components within the etching solution, such as an oxidant concentration. Then, based upon such measurement, a makeup amount of the components may be added be a makeup unit to the etching solution to control the concentration of the components within the etching system.