Abstract:
The present disclosure relates to a wafer level chip scale package (WLCSP) with a stress absorbing cap substrate. The cap substrate is bonded to a die through a bond ring and a bond pad arranged on an upper surface of the cap substrate. A through substrate via (TSV) extends from the bond pad, through the cap substrate, to a lower surface of the cap substrate. Further, recesses in the upper surface extend around the bond pad and along sidewalls of the bond ring. The recesses absorb induced stress, thereby mitigating any device offset in the die.
Abstract:
A microelectromechanical systems (MEMS) package includes a eutectic bonding structure free of a native oxide layer and an anti-stiction layer, while also including a MEMS device having a top surface and sidewalls lined with the anti-stiction layer. The MEMS device is arranged within a MEMS substrate having a first eutectic bonding substructure arranged thereon. A cap substrate having a second eutectic bonding substructure arranged thereon is eutectically bonded to the MEMS substrate with a eutectic bond at the interface of the first and second eutectic bonding substructures. The anti-stiction layer lines a top surface and sidewalls of the MEMS device, but not the first and second eutectic bonding substructures. A method for manufacturing the MEMS package and a process system for selective plasma treatment are also provided.
Abstract:
The present disclosure relates to a MEMS device with a hermetic sealing structure, and an associated method. In some embodiments, a first die and a second die are bonded at a bond interface region to form a chamber. A conformal thin film structure is disposed covering an outer sidewall of the bond interface region to provide hermetic sealing. In some embodiments, the conformal thin film structure is a continuous thin layer covering an outer surface of the second die and a top surface of the first die. In some other embodiments, the conformal thin film structure comprises several discrete thin film patches disposed longitudinal.
Abstract:
Various embodiments of the present disclosure are directed towards a microelectromechanical system (MEMS) device. The MEMS device includes a first dielectric structure disposed over a first semiconductor substrate, where the first dielectric structure at least partially defines a cavity. A second semiconductor substrate is disposed over the first dielectric structure and includes a movable mass, where opposite sidewalls of the movable mass are disposed between opposite sidewall of the cavity. A first piezoelectric anti-stiction structure is disposed between the movable mass and the first dielectric structure, wherein the first piezoelectric anti-stiction structure includes a first piezoelectric structure and a first electrode disposed between the first piezoelectric structure and the first dielectric structure
Abstract:
The present disclosure relates to a micro-electro mechanical system (MEMS) package and a method of achieving differential pressure adjustment in multiple MEMS cavities at a wafer-to-wafer bonding level. A device substrate comprising first and second MEMS devices is bonded to a capping substrate comprising first and second recessed regions. A ventilation trench is laterally spaced apart from the recessed regions and within the second cavity. A sealing structure is arranged within the ventilation trench and defines a vent in fluid communication with the second cavity. A cap is arranged within the vent to seal the second cavity at a second gas pressure that is different than a first gas pressure of the first cavity.
Abstract:
The present disclosure relates to a method of forming a micro-electro mechanical system (MEMs) structure. In some embodiments, the method may be performed by providing a device substrate having a first MEMS device and a second MEMS device, and by providing a capping structure having a first cavity and a second cavity. The capping structure is bonded to the device substrate, such that the first cavity is arranged over the first MEMS device and the second cavity is arranged over the second MEMS device. A first pressure is established within the first cavity and the second cavity. A vent is selectively etched within the capping structure to change the first pressure within the second cavity to a second pressure, which is different from the first pressure.
Abstract:
The present disclosure is directed to a monolithic MEMS (micro-electromechanical system) platform having a temperature sensor, a pressure sensor and a gas sensor, and an associated method of formation. In some embodiments, the MEMS platform includes a semiconductor substrate having one or more transistor devices and a temperature sensor. A dielectric layer is disposed over the semiconductor substrate. A cavity is disposed within an upper surface of the dielectric layer. A MEMS substrate is arranged onto the upper surface of the dielectric layer and has a first section and a second section. A pressure sensor has a first pressure sensor electrode that is vertically separated by the cavity from a second pressure sensor electrode within the first section of a MEMS substrate. A gas sensor has a polymer disposed between a first gas sensor electrode within the second section of a MEMS substrate and a second gas sensor electrode.
Abstract:
Some embodiments relate to multiple MEMS devices that are integrated together on a single substrate. A device substrate comprising first and second micro-electro mechanical system (MEMS) devices is bonded to a capping structure. The capping structure comprises a first cavity arranged over the first MEMS device and a second cavity arranged over the second MEMS device. The first cavity is filled with a first gas at a first gas pressure. The second cavity is filled with a second gas at a second gas pressure, which is different from the first gas pressure. A recess is arranged within a lower surface of the capping structure. The recess abuts the second cavity. A vent is arranged within the capping structure. The vent extends from a top of the recess to the upper surface of the capping structure. A lid is arranged within the vent and configured to seal the second cavity.