Abstract:
Some embodiments of the present disclosure relate to a memory device, which includes a floating gate formed over a channel region of a substrate, and a control gate formed over the floating gate. First and second spacers are formed along sidewalls of the control gate, and extend over outer edges of the floating gate to form a non-uniform overhang, which can induce a wide distribution of erase speeds of the memory device. To improve the erase speed distribution, an etching process is performed on the first and second spacers prior to erase gate formation. The etching process removes the overhang of the first and second spacers at an interface between a bottom region of the first and second spacers and a top region of the floating gate to form a planar surface at the interface, and improves the erase speed distribution of the memory device.
Abstract:
The present disclosure relates to a self-aligned split gate memory cell, and an associated method. The self-aligned split gate memory cell has a memory gate with a flat top surface. A memory gate spacer is arranged directly above the memory gate having a lateral dimension smaller than that of the memory gate. The memory gate spacer has an inner sidewall disposed along an upper portion of a charge trapping layer and an outer sidewall recessed back laterally relative to an outer sidewall of the memory gate. In some embodiments, a dielectric liner is continuously lined the outer sidewall of the memory gate, extending on a portion of the top surface of the memory gate not covered by the memory gate spacer, and extending upwardly along the outer sidewall of the memory gate spacer.
Abstract:
A method of manufacturing an embedded flash memory device is provided. A pair of gate stacks are formed spaced over a semiconductor substrate, and including floating gates and control gates over the floating gates. A common gate layer is formed over the gate stacks and the semiconductor substrate, and lining sidewalls of the gate stacks. A first etch is performed into the common gate layer to recess an upper surface of the common gate layer to below upper surfaces respectively of the gate stacks, and to form an erase gate between the gate stacks. Hard masks are respectively formed over the erase gate, a word line region of the common gate layer, and a logic gate region of the common gate layer. A second etch is performed into the common gate layer with the hard masks in place to concurrently form a word line and a logic gate.
Abstract:
The present disclosure relates to an integrated circuit (IC). The IC includes a substrate, which includes a periphery region having a first substrate surface and a memory cell region having a second substrate surface. The second substrate surface is recessed within the substrate relative to the first substrate surface. A high k metal gate (HKMG) transistor is disposed on the first substrate surface and includes a HKMG gate. Two neighboring flash memory cells are disposed on the second substrate surface and include a pair of flash memory cell control gates. Top surfaces of the HKMG gate and flash memory cell control gates are co-planar.
Abstract:
A semiconductor structure for a split gate flash memory cell device with a hard mask having an asymmetric profile is provided. In some embodiments, a semiconductor substrate of the semiconductor structure includes a first source/drain region and a second source/drain region. A control gate and a memory gate, of the semiconductor structure, are spaced over the semiconductor substrate between the first and second source/drain regions. A charge trapping dielectric structure of the semiconductor structure is arranged between neighboring sidewalls of the memory gate and the control gate, and arranged under the memory gate. A hard mask of the semiconductor structure is arranged over the control gate and includes an asymmetric profile. The asymmetric profile tapers in height away from the memory gate. A method for manufacturing a pair of split gate flash memory cell devices with hard masks having an asymmetric profile is also provided.
Abstract:
A semiconductor structure of a split gate flash memory cell is provided. The semiconductor structure includes a semiconductor substrate including a source region and a drain region. Further, the semiconductor structure includes a floating gate, a word line, and an erase gate located over the semiconductor substrate between the source and drain regions. The floating gate is arranged between the word line and the erase gate. Even more, the semiconductor structure includes a dielectric disposed between the erase and floating gates. A thickness of the dielectric between the erase and floating gates is variable and increases towards the semiconductor substrate. A method of manufacturing the semiconductor structure is also provided.
Abstract:
The present disclosure relates to an integrated circuit (IC), including, a flash memory device region, including a pair of split-gate flash memory cells arranged over a semiconductor substrate. The pair of split gate flash memory cells respectively have a control gate (CG) including a polysilicon gate and an overlying silicide layer. A periphery circuit including, one or more high-k metal gate (HKMG) transistors are arranged over the semiconductor substrate at a position laterally offset from the flash memory device region. The one or more HKMG transistors have a metal gate electrode with an upper surface that is lower than an upper surface of the silicide layer. A method of manufacturing the IC is also provided.
Abstract:
A semiconductor structure for a split gate flash memory cell device with a hard mask having an asymmetric profile is provided. A semiconductor substrate of the semiconductor structure includes a first source/drain region and a second source/drain region. A control gate and a memory gate, of the semiconductor structure, are spaced over the semiconductor substrate between the first and second source/drain regions. A charge trapping dielectric structure of the semiconductor structure is arranged between neighboring sidewalls of the memory gate and the control gate, and arranged under the memory gate. A hard mask of the semiconductor structure is arranged over the control gate and includes an asymmetric profile. The asymmetric profile tapers in height away from the memory gate. A method for manufacturing a pair of split gate flash memory cell devices with hard masks having an asymmetric profile is also provided.
Abstract:
The present disclosure relates to an integrated chip having a FinFET device and an embedded flash memory device, and a method of formation. In some embodiments, the integrated chip has a logic region and a memory region that is laterally separated from the logic region. The logic region has a first plurality of fins of semiconductor material protruding outward from a semiconductor substrate. A gate electrode is arranged over the first plurality of fins of semiconductor material. The memory region has a second plurality of fins of semiconductor material extending outward from the semiconductor substrate. An embedded flash memory cell is arranged onto the second plurality of fins of semiconductor material. The resulting integrated chip structure provides for good performance since it contains both a FinFET device and an embedded flash memory device.
Abstract:
The present disclosure relates to a flash memory cell. In some embodiments, the flash memory cell has a control gate arranged over a substrate, and a select gate separated from the substrate by a gate dielectric layer. A charge trapping layer has a first portion disposed between the select gate and the control gate, and a second portion arranged under the control gate. A first control gate spacer is arranged on the second portion of the charge trapping layer. A second control gate spacer is arranged on the second portion of the charge trapping layer and is separated from the control gate by the first control gate spacer.