Abstract:
The present invention relates to a method, a reagent and an apparatus for determining a substrate concentration based on an amount of hydrogen peroxide generated from a substrate. In the present invention, a suppressing agent for suppressing a reaction between the hydrogen peroxide and an inhibitor is added. As the suppressing agent, an azide compound such as sodium azide or a nitrite compound such as sodium nitrite is used. In the invention, a supporting electrolyte, such as sodium chloride or potassium chloride may be further added.
Abstract:
A nonvolatile semiconductor apparatus of the present invention comprises (103), a second electrode (105), and a resistance variable layer (104) disposed between the first electrode (103) and the second electrode (105), a resistance value of the resistance variable layer being switchable reversibly in response to an electric signal applied between the electrodes (103), (105), wherein the resistance variable layer (104) comprises an oxide containing tantalum and nitrogen.
Abstract:
The present invention relates to a method for measuring the concentration of a particular component in a blood sample containing blood cells based on a variable correlated with the concentration of the particular component. In the present invention, a concentration (S) in blood plasma obtained by removing blood cell components from the blood sample, a concentration (DI) in the blood sample computed by a differential method and a concentration (EP) in the blood sample computed by an equilibrium point method are expressed by a relational expression which is unrelated to the proportion of the blood cell components in the blood sample, and the concentration of the particular component is computed by using the relational expression.
Abstract:
A lower electrode layer 2, an upper electrode layer 4 formed above the lower electrode layer 2, and a metal oxide thin film layer 3 formed between the lower electrode layer 2 and the upper electrode layer 4 are provided. The metal oxide thin film layer 3 includes a first region 3a whose value of resistance increases or decreases by an electric pulse that is applied between the lower electrode layer 2 and the upper electrode layer 4 and a second region 3b arranged around the first region 3a and having a larger content of oxygen than the first region 3a, wherein the lower and upper electrode layers 2 and 4 and at least a part of the first region 3a are arranged so as to overlap as viewed from the direction of the thickness of the first region 3a.
Abstract:
The present invention provides a semiconductor device comprising: a semiconductor layer (3); a gate electrode (11) formed on the semiconductor layer (3) via a gate insulation film (10); and a first insulation film (13) formed at one or more of sidewalls of the semiconductor layer (3), the gate insulation film (10) and the gate electrode (11); wherein the first insulation film (13) overlies a part of the gate insulation film (10) surface. According to the semiconductor device, leakage current at the isolation edge can be suppressed and thus reliability can be improved.
Abstract:
A silicon oxide film 102, a Pt film 103x, a Ti film 104x and a PZT film 105x are deposited in this order over a Si substrate 101. The Si substrate 101 is placed in a chamber 106 so that the PZT film 105x is irradiated with an EHF wave 108. The irradiation with the EHF wave locally heats a dielectric film such as the PZT film. As a result, it is possible to improve, for example, the leakage property of the dielectric film without adversely affecting a device formed on the Si substrate 101.
Abstract:
An image forming apparatus includes an image forming portion for forming an image, an image reading portion for reading an image, displaceable with respect to the image forming portion, and an open/closable member that can be opened or closed with respect to a main body of the image forming portion and displaced toward the image reading portion, wherein the displacement of the open/closable member is effected in relation to the displacement of the image reading portion. In this manner the open/closable member can be opened or closed by a simple operation, without increasing the dimension of the image forming apparatus.
Abstract:
A semiconductor device of this invention includes: a semiconductor substrate; a gate electrode formed on the semiconductor substrate; a pair of source and drain electrodes respectively formed in regions of the semiconductor substrate situated on opposite sides of the gate electrode in a plan view; and a germanium-containing channel layer situated below the gate electrode to sandwich an gate insulator therebetween and intervening between the pair of source and drain electrodes, wherein a silicide layer forming at least a part of the source and drain electrodes has a lower germanium concentration than the channel layer.
Abstract:
This specification relates to a process for manufacturing a semiconductor device, comprising the steps of: forming a lower gate electrode film on a semiconductor substrate 10 via a gate insulating film 11; forming an upper gate electrode film on the lower gate electrode film, the upper gate electrode film being made of a material having a lower oxidation rate than that of the lower gate electrode film; forming a gate electrode 12 by patterning the upper gate electrode film and the lower gate electrode film, the gate electrode 12 comprising a lower gate electrode element 12a and an upper gate electrode element 12b; forming source/drain regions 15 by introducing an impurity into the semiconductor substrate 10; and forming oxide film sidewalls 13 by oxidizing the side faces of the lower gate electrode element 12a and the upper gate electrode element 12b, the thickness of the oxide film sidewalls 13 in the gate length direction being larger at the sides of the lower gate electrode element 12a than at the sides of the upper gate electrode element 12b.
Abstract:
A semiconductor integrated circuit fabrication method according to this invention includes: a step of forming a pair of first device forming regions and a pair of second device forming regions in a surface layer portion of a semiconductor substrate by surrounding each of the regions by device isolation; a step of forming a first oxide film covering the surface of the semiconductor substrate after the preceding step; a step of removing an intended portion of the first oxide film to expose the pair of second device forming regions; a step of forming a pair of heterojunction structures, by selective epitaxial growth, on the pair of second device forming regions thus exposed; a step of forming a second oxide film covering the surface of the substrate after the preceding step; and a step of forming a pair of gate electrodes above each of the pair of first device forming regions and the pair of second device forming regions, whereby a normal complementary MOS transistor and a heterojunction complementary MOS transistor are eventually formed in the pair of first device forming regions and the pair of second device forming regions, respectively.