Abstract:
A plasma etching apparatus includes an upper electrode and a lower electrode, between which plasma of a process gas is generated to perform plasma etching on a wafer W. The apparatus further comprises a cooling ring disposed around the wafer, a correction ring disposed around the cooling ring, and a variable DC power supply directly connected to the correction ring, the DC voltage being preset to provide the correction ring with a negative bias, relative to ground potential, for attracting ions in the plasma and to increase temperature of the correction ring to compensate for a decrease in temperature of a space near the edge of the target substrate due to the cooling ring.
Abstract:
An apparatus includes an upper electrode and a lower electrode for supporting a wafer disposed opposite each other within a process chamber. A first RF power supply configured to apply a first RF power having a relatively higher frequency is connected to the upper electrode. A second RF power supply configured to apply a second RF power having a relatively lower frequency is connected to the lower electrode. A variable DC power supply is connected to the upper electrode. A process gas is supplied into the process chamber while any one of application voltage, application current, and application power from the variable DC power supply to the upper electrode is controlled, to generate plasma of the process gas so as to perform plasma etching.
Abstract:
A plasma processing apparatus includes: a mounting table, disposed in a processing chamber, configured to mount thereon the substrate; an inductively coupled antenna disposed outside the processing chamber to be opposite to the mounting table, the inductively coupled antenna being connected to a high frequency power supply; and a window member forming a wall of the processing chamber which faces the inductively coupled antenna. The window member includes a plurality of conductive windows made of a conductive material, and dielectric portions disposed between the conductive windows. The inductively coupled antenna is extended in a predetermined direction on the window member and electrically connected to one of the conductive windows, and electrical connection by conductors is sequentially performed from the one of the conductive windows to the other conductive windows in the same direction as an extension direction of the inductively coupled antenna.
Abstract:
A film formation device to conduct a film formation process for a substrate includes a rotating table, a film formation area configured to include a process gas supply part, a plasma processing part, a lower bias electrode provided at a lower side of a position of a height of the substrate on the rotating table, an upper bias electrode arranged at the same position of the height or an upper side of a position of the height, a high-frequency power source part connected to at least one of the lower bias electrode and the upper bias electrode and configured to form a bias electric potential on the substrate in such a manner that the lower bias electrode and the upper bias electrode are capacitively coupled, and an exhaust mechanism.
Abstract:
An apparatus for plasma processing includes an RF power source and a set of resonating structures coupled to the RF power source. The resonating structures include a first region and a second region adjacent to the second region. The first region includes a first antenna and a first coupling circuit, the first coupling circuit being outside a coupling of the RF power source to the first region, where the first coupling circuit is configured to adjust a power distribution of the first region. The second region includes a second antenna.
Abstract:
In accordance with an embodiment, a measurement system includes a sensor circuit configured to provide a voltage sense signal proportional to an electric field sensed by the RF sensor and a current sense signal proportional to a magnetic field sensed by the RF sensor; an analysis circuit comprising a frequency selective demodulator circuit configured to: demodulate the voltage sense signal into a first set of analog demodulated signals according to a set of demodulation frequencies, demodulate the current sense signal into a second set of analog demodulated signals according to the set of demodulation frequencies, and determine a phase shift between the voltage sense signal and the current sense signal for at least one frequency of the set of demodulation frequencies; and analog-to-digital converters configured to receive the first and second sets of analog demodulated signals.
Abstract:
A plasma etching apparatus includes an upper electrode and a lower electrode, between which plasma of a process gas is generated to perform plasma etching on a wafer W. The apparatus further comprises a cooling ring disposed around the wafer, a correction ring disposed around the cooling ring, and a variable DC power supply directly connected to the correction ring, the DC voltage being preset to provide the correction ring with a negative bias, relative to ground potential, for attracting ions in the plasma and to increase temperature of the correction ring to compensate for a decrease in temperature of a space near the edge of the target substrate due to the cooling ring.
Abstract:
A plasma processing method for performing a plasma process on a processing target substrate is provided. The plasma processing method includes: segmenting a RF antenna into an inner coil, an intermediate coil, and an outer coil with gaps therebetween in a radial direction, respectively, the inner coil, the intermediate coil and the outer coil being electrically connected to one another in parallel between a first node and a second node; providing a variable intermediate capacitor and a variable outer capacitor between the first node and the second node, the variable intermediate capacitor being electrically connected in series to the intermediate coil, the variable outer capacitor being electrically connected in series to the outer coil, no reactance device being connected to the inner coil; and controlling plasma density distribution on the processing target substrate by selecting or variably adjusting electrostatic capacitances of the intermediate capacitor and the outer capacitor.
Abstract:
A plasma processing apparatus is provided. According to the apparatus, a main antenna connected to a high frequency power source and an auxiliary antenna electrically insulated from main antenna is arranged. Moreover, projection areas when the main antenna and the auxiliary antenna are seen in a plan view are arranged so as not to overlap with each other. More specifically, the auxiliary antenna is arranged on a downstream side in a rotational direction of the turntable relative to the main antenna. Then, a first electromagnetic field is generated in the auxiliary antenna by way of an induction current flowing through the main antenna, and a second induction plasma is generated even in an area under the auxiliary antenna in addition to an area under the main antenna by resonating the auxiliary antenna.
Abstract:
A plasma processing apparatus includes a first and second electrodes disposed on upper and lower sides and opposite each other within a process container, a first RF power application unit and a DC power supply both connected to the first electrode, and second and third radio frequency power application units both connected to the second electrode. A conductive member is disposed within the process container and grounded to release through plasma a current caused by a DC voltage applied from the DC power supply. The conductive member is supported by a first shield part around the second electrode and laterally protruding therefrom at a position between the mount face of the second electrode and an exhaust plate for the conductive member to be exposed to the plasma. The conductive member is grounded through a conductive internal body of the first shield part.