摘要:
Sulfonate compositions are disclosed. The compositions include alkanesulfonates, alkenesulfonates, sultones, and hydroxy-substituted alkanesulfonates. The sulfonates comprise a reaction product of a metathesis-derived C10-C17 monounsaturated acid, octadecene-1,18-dioic acid, or their ester derivatives with a sulfonating or sulfitating agent. In one aspect, the sulfonate composition is a sulfo-estolide made by reacting a metathesis-derived C10-C17 monounsaturated acid or octadecene-1,18-dioic acid with a sulfonating agent, optionally in the presence of a saturated fatty acid. The sulfonates are valuable for a wide variety of end uses, including cleaners, fabric treatment, hair conditioning, personal care (liquid cleansing products, conditioning bars, oral care products), paint additives, antimicrobial compositions, agricultural uses, and oil field applications.
摘要:
Aqueous hard surface cleaner compositions derived from metathesized natural oil feedstocks are disclosed. In one aspect, the compositions comprise at least one anionic surfactant derived from a metathesis-derived C10-C17 monounsaturated acid, 5 octadecene-1,18-dioic acid, or their ester derivatives. In another aspect, aqueous hard surface cleaners comprising at least one nonionic or amphoteric surfactant derived from a metathesis-derived C10-C17 monounsaturated acid, octadecene-1,18-dioic acid, or their ester derivatives are disclosed. The aqueous cleaners noted above rival or outperform commercial baselines in a Gardner straight-line washability test. Industrial degreasers comprising a C10 or C12 amide solvent and derived from a metathesis-derived C10-C17 monounsaturated acid are superior to commercial standards.
摘要:
Provided herein are compounds of the formula: in which n is an integer equal to or greater than 1; R2 is selected from hydrogen and optionally substituted alkyl that is saturated or unsaturated, and branched or unbranched; and R1, R3, and R4, independently for each occurrence, are selected from optionally substituted alkyl that is saturated or unsaturated, and branched or unbranched, wherein compositions comprising the compounds are characterized by particular combinations of values for estolide number, kinematic viscosity, and pour point. Also provided are compositions containing the compounds and methods of making both the compounds and compositions thereof.
摘要:
Provided herein are compounds of the formula: in which n is an integer equal to or greater than 1; R2 is selected from hydrogen and optionally substituted alkyl that is saturated or unsaturated, and branched or unbranched; and R1, R3, and R4, independently for each occurrence, are selected from optionally substituted alkyl that is saturated or unsaturated, and branched or unbranched, wherein compositions comprising the compounds are characterized by particular combinations of values for estolide number, kinematic viscosity, and pour point. Also provided are compositions containing the compounds and methods of making both the compounds and compositions thereof.
摘要:
Provided herein are estolide compositions having high oxidative stability, said compositions comprising at least one compound of formula: in which n is an integer equal to or greater than 0; m is an integer equal to or greater than 1; R1, independently for each occurrence, is selected from optionally substituted alkyl that is saturated or unsaturated, and branched or unbranched; R2 is selected from hydrogen and optionally substituted alkyl that is saturated or unsaturated, and branched or unbranched; and R3 and R4, independently for each occurrence, are selected from optionally substituted alkyl that is saturated or unsaturated, and branched or unbranched. Also provided herein are uses for the compositions and methods of preparing the same.
摘要:
Provided are hydrolases, including lipases, saturases, palmitases and/or stearatases, and polynucleotides encoding them, and methods of making and using these polynucleotides and polypeptides. Further provided are polypeptides, e.g., enzymes, having a hydrolase activity, e.g., lipases, saturases, palmitases and/or stearatases and methods for preparing low saturate or low trans fat oils, such as low saturate or low trans fat animal or vegetable oils, e.g., soy or canola oils.
摘要:
A method is disclosed for the generation of triacylglycerols from gums that have been separated from an oil product. The gums are treated with an enzyme having PLC activity, which results in the formation of diacylglycerols and phosphates, and treated with an enzyme having PLA activity, which results in the formation of lyso-phospholipids and free fatty acids. The diacylglycerols and the free fatty acids from these two separate reactions then combine in the presence of the enzymes to generate new triacylglycerol molecules.
摘要:
The present invention is concerned with an edible plant oils from which saturated fatty acids were removed and manufacturing process thereof. In order to remove saturated fatty acids from the edible plant oils; 1) Saturated and unsaturated fatty acids bound on same triglyceride molecules of edible plant oils were segregated each other as alkylesters of fatty acids by conventional transesterification reaction in which edible plant oils were treated with large excess of absolute C1˜C8 alkanol under the presence of catalytic amount of alkali- or alkali-earth metal-C1˜C8 alkoxide. 2) The alkyl-esters of mixed fatty acids were treated with C1˜C8 alkanol solution of urea to remove the alkylester of saturated fatty acids by conventional fractional crystallization as urea complexes of saturated fatty acid-alkylesters. 3) Finally the resulting alkylesters of unsaturated fatty acids, obtained by removal of saturated fatty acids by urea complexation procedure, was converted to reconstructed triglyceride oil to give edible plant oils completely devoid of saturated fatty acids. This new manufacturing process could be successfully applied to following 22 kinds of edible plant; 1) corn oil, 2) soybean oil, 3) rapeseed oil, 4) grape seed oil, 5) flaxseed oil, 6) sesame oil, 7) olive oil, 8) perilla oil 9) wall nut oil, 10) pine-nut oil, 11) peanuts oil, 12) sunflower oil, 13) safflower oil, 14) cotton seed oil, 15) palm oil, 16) hot pepper oil, 17) rice bran oil, 18) pumpkin oil, 19) green tea seed oil, 20) almond oil, 21) evening primrose oil and 22) hazelnut oil.
摘要:
Provided are hydrolases, including lipases, saturases, palmitases and/or stearatases, and polynucleotides encoding them, and methods of making and using these polynucleotides and polypeptides. Further provided are polypeptides, e.g., enzymes, having a hydrolase activity, e.g., lipases, saturases, palmitases and/or stearatases and methods for preparing low saturate or low trans fat oils, such as low saturate or low trans fat animal or vegetable oils, e.g., soy or canola oils.
摘要:
The present invention relates to a process for preparing hard butter having high SOS content by mixing oil for preparing butter with fatty acid or fatty acid ester, adding 1,3 regio-specific enzymes to the obtained mixture to carry out interesterification, distilling the obtained reactants to remove fatty acid, ethyl ester, and monoglyceride and diglyceride formed after the reaction and fractionally extracting the obtained reactants to separate a solid phase, and to cocoa butter equivalents prepared by the hard butter and a process for preparing the same in which the cocoa butter equivalents can replace existing import cocoa butter equivalents with 1:1 because of its equivalent chemical properties, and have no difference in taste and properties with natural cocoa butter and also have lower trans fatty acid. Hard butter according to the present invention can make desired triglyceride structure in oil based on the reaction conditions and have a improved purity and yield in the whole process by recycling all of byproduct other than major product in the distillation and fractional distillation process and is eco-friendly matter by using the enzymatic interesterification reaction, and also cocoa butter equivalents made by the hard butter is characterized in replacing existing import cocoa butter equivalents with 1:1 because of its equivalent chemical composition and properties in the production of chocolate with no difference in taste.