Method for growth of in situ p-type semiconductor films using a group V
flux
    25.
    发明授权
    Method for growth of in situ p-type semiconductor films using a group V flux 失效
    使用V族通量生长原位p型半导体膜的方法

    公开(公告)号:US5976958A

    公开(公告)日:1999-11-02

    申请号:US965390

    申请日:1997-11-06

    Abstract: A method of growing a p-type doped Group II-VI semiconductor film includes the steps of forming a lattice comprising a Group II material and a Group VI material and generating a first Group V flux by evaporating a solid Group V source material. The first Group V flux is then decomposed to generate a second Group V flux, which is, in turn, provided to the lattice to p-type dope the growing film. The Group V source material may by arsenic such that the second Group V flux may predominantly include dimeric arsenic decomposed from tetrameric arsenic to improve the incorporation of arsenic into the Group VI sublattice of the lattice.

    Abstract translation: 生长p型掺杂的II-VI族半导体膜的方法包括以下步骤:形成包含II族材料和VI族材料的晶格,并通过蒸发固体V族源材料产生第一V族熔剂。 然后第一组V磁通被分解以产生第二组V磁通,其又提供给p型掺杂生长膜的晶格。 V族源材料可以通过砷使得第二V族通量主要包括从四聚砷分解的二聚砷,以改善砷掺入到晶格的第VI族亚晶格中。

    Composition control of CSVPE HgCdTe
    27.
    发明授权
    Composition control of CSVPE HgCdTe 失效
    CSVPE HgCdTe的组成控制

    公开(公告)号:US4447470A

    公开(公告)日:1984-05-08

    申请号:US447082

    申请日:1982-12-06

    Applicant: Robert E. Kay

    Inventor: Robert E. Kay

    Abstract: Methods for growing HgCdTe (15) upon a CdTe substrate (5) using a HgTe source (3) and close-spaced vapor phase epitaxy (CSVPE). A processing temperature T of between 520.degree. C. and 625.degree. C. is employed over a processing time t of between approximately 1/4 and 4 hours. The thickness A of the grown HgCdTe (15) is a linear function of processing time t. The mole fraction x of cadmium in the HgCdTe (15) is a linear function of temperature T and an exponential function of the mole fraction y of mercury in the source (3). The lower the relative amount of mercury in the source (3), the greater the relative amount of mercury in the end product (15), and vice versa. Any crystal plane and any axial orientation of the CdTe substrate (5) can be used without affecting the rate of growth of the HgCdTe (15), the single crystal nature of the HgCdTe (15), or the mirror-like finish of its surface. At least 90% of the transition between the CdTe substrate (5) and the grown HgCdTe layer (15) occurs within the first 20% of the HgCdTe layer (15); for distances greater than this away from the substrate (5), the HgCdTe (15) exhibits a substantially uniform x.

    Abstract translation: 使用HgTe源(3)和紧密间隔的气相外延(CSVPE)在CdTe衬底(5)上生长HgCdTe(15)的方法。 在大约1/4至4小时之间的处理时间t内采用520℃至625℃之间的加工温度T. 生长的HgCdTe(15)的厚度A是处理时间t的线性函数。 HgCdTe(15)中镉的摩尔分数x是温度T的线性函数,以及源(3)中汞的摩尔分数y的指数函数。 源(3)中汞的相对量越低,最终产品(15)中汞的相对量越大,反之亦然。 可以使用CdTe基板(5)的任何晶面和任何轴向取向,而不影响HgCdTe(15)的生长速率,HgCdTe(15)的单晶性质或其表面的镜面光洁度 。 CdTe衬底(5)和生长的HgCdTe层(15)之间的至少90%的转变发生在HgCdTe层(15)的前20%内; 对于远离衬底(5)的距离,HgCdTe(15)表现出基本均匀的x。

Patent Agency Ranking