Abstract:
Methods for catalytically dehydrating hydroxypropionic acid, hydroxypropionic acid derivatives, or mixtures thereof to acrylic acid, acrylic acid derivatives, or mixtures thereof with high yield and selectivity and without significant conversion to undesired side products, such as, acetaldehyde, propionic acid, and acetic acid, are provided. The catalysts are mixed condensed phosphates.
Abstract:
A process to make a Fischer-Tropsch catalyst with improved hydrothermal stability, comprising: a. contacting a crystalline oxide material with a solution of a tungsten and a phosphorus to make a tungsten-phosphorus modified support; b. calcining the tungsten-phosphorus modified support at a temperature less than or equal to 750° C. to make a calcined tungsten-phosphorus modified support that has the improved hydrothermal stability and that can be used to support a Co-loaded Fischer-Tropsch catalyst. A Co-loaded Fischer-Tropsch catalyst having improved hydrothermal stability and higher C5+ hydrocarbon productivity is also provided. A Fischer-Tropsch synthesis process is provided, comprising contacting a gaseous mixture comprising a carbon monoxide and a hydrogen with the Co-loaded Fischer-Tropsch catalyst having the improved hydrothermal stability and higher C5+ productivity, at a pressure of from 0.1 to 3 MPa and at a reaction temperature of from 180 to 260° C., thereby producing a product comprising C5+ hydrocarbons.
Abstract:
Bio-based glacial acrylic acid, produced from hydroxypropionic acid, hydroxypropionic acid derivatives, or mixtures thereof and having impurities of hydroxypropionic acid, hydroxypropionic acid derivatives, or mixtures thereof, is polymerized to poly(acrylic acid) or superabsorbent polymer using the same processes as petroleum-derived glacial acrylic acid.
Abstract:
The present invention provides the use of a metal-doped hydroxyapatite catalyst for highly selective conversion of an alcohol to an aldehyde at low temperatures. More specifically, the invention provides the use of a silver-doped hydroxyapatite catalyst for the highly selective oxidative dehydrogenation of ethanol to acetaldehyde. The present invention also provides the method for converting ethanol to acetaldehyde using a silver-doped hydroxyapatite catalyst.
Abstract:
A catalyst composition is provided for isomerization of paraffins comprising of at least one heteropoly acid and reduced graphene oxide. Further provided are a process for preparation of the catalyst composition and a process for isomerization of paraffins using the catalytic composition.
Abstract:
This invention provides processes for forming solution compositions, which processes comprises bringing together, in an aqueous medium, i) at least one phosphorus compound; ii) at least one Group VI metal compound; and iii) at least one Group VIII metal compound, such that a solution having a Group VI metal concentration of more than about 5.6 mol/L is formed. Also provided are compositions formed by such processes, processes for forming catalyst compositions from these compositions, and catalyst compositions formed by these processes.
Abstract:
A subgroup VI element to prepare a catalyst for the production of organic chemicals and fuels from lignin with the involvement of solvent molecules. The catalytic reaction use a catalyst composed of a molybdenum or tungsten compound as the active phase, with mixing a kind of lignin, a catalyst, and a reactive solvent. An inert or reductive gas such as H2, N2 or Ar is used to purge or fill the reaction vessel. The temperature is above 200° C., the reaction time is sufficient. The liquid product is separated and analyzed; a catalytic process with a very high product yield, up to 90% if calculated accounting the parts from lignin of the product molecules, or up to over 100% if calculated as the mass products. The product includes aromatic compounds, esters, alcohols, monophenols and benzyl alcohols in different ratios according to the composition, the solvent and the other reaction conditions.
Abstract:
A hydroprocessing catalyst composition that comprises a support material and a selenium component and which support material further includes at least one hydrogenation metal component. The hydroprocessing catalyst is prepared by incorporating a selenium component into a support particle and, after calcination thereof, incorporating at least one hydrogenation metal component into the selenium-containing support. The metal-incorporated, selenium-containing support is calcined to provide the hydroprocessing catalyst composition.
Abstract:
An object of the present invention is to provide, for the production of isobutene, a high-yielding, highly-selective, and long-term stable production process of isobutene from TBA. With respect to the production of TBA, an object of the present invention is to provide a TBA production process in which, through long-term stable maintenance of a high reaction activity, long-term continuous operation is enabled and the productivity is improved. The present invention discloses a process for producing isobutene that employs a dehydration temperature of from 200 to 450° C. in use of an alumina catalyst that contains a Na content of 0.6% by weight or less in terms of NaO2 and a Na content of 0.4% by weight in terms of NaO2, and has a specific surface area of from 200 to 600 m2/g.
Abstract:
A composition for the destruction of chemical warfare agents and toxic industrial chemicals having a polyoxometalate (POM) attached to an amine, carboxylic acid, or ammonium substituted porous polymer. Also disclosed is a method for attaching a POM to an amine, carboxylic acid, or ammonium substituted porous polymer by (1) dissolving the POM in water or an organic solvent, adding the functionalized porous polymer, whereby the POM ionically attaches to the amine, carboxylic acid or ammonium group, or (2) heating the POM and functionalized polymer in the presence of a dehydrating agent whereby an imide bond is produced between the POM and the functionality on the porous polymer.