Abstract:
Embodiments of process kits for use in a process chamber are provided herein. In some embodiments, a process kit for use in a process chamber includes an annular ring configured to surround a substrate support; and an annular lip extending from an upper surface of the annular ring, wherein the annular ring includes a plurality of ring slots extending through the annular ring and disposed at regular intervals along the annular ring, and wherein the annular lip includes a plurality of lip slots extending through the annular lip disposed at regular intervals along the annular lip.
Abstract:
An apparatus for relaying microwave field intensity in a microwave cavity. In some embodiments, the apparatus comprises a microwave transparent substrate with at least one Radio Frequency (RF) detector that is capable of detecting a microwave field and generating a signal associated with a field intensity of the detected microwave field and a transmitter that receives the signal associated with the detected microwave field from the RF detector and transmits or stores information about the detected microwave field intensity. In some embodiments, the apparatus relays the microwave intensity via a wired, wireless, or optical transmitter located in proximity of the RF detector.
Abstract:
Methods and apparatus for uniform thermal distribution across semiconductor batches are provided herein. According to one embodiment, a microwave oven for semiconductor processing, comprising a thermal housing having a cavity and a plurality of input ports, a power source configured to provide a microwave signal to the cavity of the thermal housing via the plurality of input ports, a phase shifter disposed between the power source and the input ports, wherein the phase shifter is configured to vary a phase difference between two or more signals provided to it; and a controller communicatively coupled to the phase shifter and configured to control the phase difference between the two or more signals.
Abstract:
Methods and apparatus for processing a substrate are described herein. A vacuum multi-chamber deposition tool can include a degas chamber with both a heating mechanism and a variable frequency microwave source. The methods described herein use variable frequency microwave radiation to increased quality and speed of the degas process without damaging the various components.
Abstract:
Embodiments described herein provide a semiconductor device and methods and apparatuses of forming the same. The semiconductor device includes a substrate having a source and drain region and a gate electrode stack on the substrate between the source and drain regions. In one embodiment, the method includes positioning a substrate within a processing chamber, wherein the substrate includes a source and drain region, a gate dielectric layer between the source and drain regions, and a conductive film layer on the gate dielectric layer. The method also includes depositing a refractory metal nitride film layer on the conductive film layer, depositing a silicon-containing film layer on the refractory metal nitride film layer, and depositing a tungsten film layer on the silicon-containing film layer.
Abstract:
Methods and apparatus for cleaning tooling parts in a substrate processing tool are provided herein. In some embodiments, a method of cleaning tooling parts in a substrate processing tool includes placing one or more dirty tools on a holder in a bonding chamber of a multi-chamber processing tool; transferring the holder from the bonding chamber to a cleaning chamber of the multi-chamber processing tool; cleaning the one or more dirty tools in the cleaning chamber to produce one or more cleaned tools; inspecting the one or more cleaned tools in an inspection chamber of the multi-chamber processing tool; and transferring the one or more cleaned tools to the bonding chamber.
Abstract:
Methods and apparatus for processing a substrate. For example, a processing chamber can include a power source, an amplifier connected to the power source, comprising at least one of a gallium nitride (GaN) transistor or a gallium arsenide (GaAs) transistor, and configured to amplify a power level of an input signal received from the power source to heat a substrate in a process volume, and a cooling plate configured to receive a coolant to cool the amplifier during operation.
Abstract:
Methods and apparatus for reducing leakage of microwaves at a slit valve of a process chamber. A multi-frequency resonant choke around the slit valve prevents microwave energy from a band of frequencies from escaping from the slit valve. The multi-frequency resonant choke may have a sloping bottom surface or a serrated bottom surface to enable multiple frequencies to resonant in the choke, canceling a range of microwave frequencies at gaps formed by a slit valve gate.
Abstract:
Methods and apparatus for supporting substrates are provided herein. In some embodiments, a substrate support for supporting a plurality of substrates includes: a plurality of substrate support elements having a ring shape configured to support a plurality of substrates in a vertically spaced apart relation; and a plurality of substrate lift elements interfacing with the plurality of substrate support elements and configured to simultaneously selectively raise or lower substrates off of or onto respective substrate support elements.
Abstract:
Substrate processing chambers with integrated shutter garage are provided herein. In some embodiments, a pre-clean substrate processing chamber may include a chamber body, wherein the chamber body includes a first side configured to be attached to mainframe substrate processing tool, and a second side disposed opposite the first side, a substrate support configured to support a substrate when disposed thereon, a shutter disk garage disposed on the second side of the process chamber, and a shutter disk assembly mechanism comprising a rotatable shaft, and a robot shutter arm coupled to the shaft, wherein the robot shutter arm includes a shutter disk assembly support section configured to support a shutter disk assembly, and wherein the shutter disk assembly mechanism is configured to move the robot shutter arm between a storage position within the shutter garage and a processing position within the process chamber over the substrate support.