Abstract:
A method for depositing a semiconductor structure on a surface of a substrate is disclosed. The method may include: depositing a first group IVA semiconductor layer over a surface of the substrate; contacting an exposed surface of the first group IVA semiconductor layer with a first gas comprising a first chloride gas; and depositing a second group IVA semiconductor layer over a surface of the first group IVA semiconductor layer. Related semiconductor structures are also disclosed.
Abstract:
A method for forming a silicon-containing epitaxial layer is disclosed. The method may include, heating a substrate to a temperature of less than approximately 950° C. and exposing the substrate to a first silicon source comprising a hydrogenated silicon source, a second silicon source, a dopant source, and a halogen source. The method may also include depositing a silicon-containing epitaxial layer wherein the dopant concentration within the silicon-containing epitaxial layer is greater than 3×1021 atoms per cubic centimeter.
Abstract:
A reactor system and related methods are provided which may include a heating element in a wafer tray. The heating element may be used to heat the wafer tray and a substrate or wafer seated on the wafer tray within a reaction chamber assembly, and may be used to cause sublimation of a native oxide of the wafer.
Abstract:
A system and method for providing intermediate reactive species to a reaction chamber are disclosed. The system includes an intermediate reactive species formation chamber fluidly coupled to the reaction chamber to provide intermediate reactive species to the reaction chamber. A pressure control device can be used to control an operating pressure of the intermediate reactive species formation chamber, and a heater can be used to heat the intermediate reactive species formation chamber to a desired temperature.
Abstract:
A gas distribution system is disclosed in order to obtain better film uniformity on a substrate in a cross-flow reactor. The better film uniformity may be achieved by an asymmetric bias on individual injection ports of the gas distribution system. The gas distribution may allow for varied tunability of the film properties.
Abstract:
Methods of forming silicon germanium tin (SiGexGe1−xSny) films are disclosed. Exemplary methods include growing films including silicon, germanium and tin in an epitaxial chemical vapor deposition reactor. Exemplary methods are suitable for high volume manufacturing. Also disclosed are structures and devices including silicon germanium tin films.
Abstract:
Methods of forming p-type doped germanium-tin layers, systems for forming the p-type doped germanium-tin layers, and structures including the p-type doped germanium-tin layers are disclosed. The p-type doped germanium-tin layers include an n-type dopant, which allows relatively high levels of tin and/or p-type dopant to be included into the p-type doped germanium-tin layers.
Abstract:
In some embodiments, a method for integrated circuit fabrication includes removing oxide material from a surface of a substrate, where the surface includes silicon and germanium. Removing the oxide material includes depositing a halogen-containing pre-clean material on a silicon oxide-containing surface and sublimating a portion of the halogen-containing pre-clean material to expose the silicon on the surface. A passivation film is deposited on the exposed silicon. The passivation film may include chlorine. The passivation film may prevent contamination of the silicon surface by chemical species from the later sublimation, which may be at a higher temperature than the earlier sublimation. Subsequently, a remaining portion of the halogen-containing pre-clean material and the passivation film are sublimated. A target material, such as a conductive material, may subsequently be deposited on the substrate surface.
Abstract:
A method of forming a semiconductor material incorporating an electrical dopant is disclosed. In one aspect, a method of incorporating dopant in a semiconductor film comprises forming a first semiconductor material incorporating the dopant at a first dopant concentration and preferentially etching a portion of the first semiconductor material, wherein etching leaves a first etched semiconductor material incorporating the dopant at a second dopant concentration higher than the first dopant concentration.
Abstract:
Gas-phase reactor systems and methods suitable for use with precursors that are solid phase at room temperature and pressure are disclosed. The systems and methods as described herein can be used to, for example, form amorphous, polycrystalline, or epitaxial layers (e.g., one or more doped semiconductor layers) on a surface of a substrate.