Abstract:
Stress and force management techniques for a semiconductor die to help compensate for stress within the semiconductor die and to help compensate for forces applied to the semiconductor die to minimize damage thereto.
Abstract:
Devices include at least one semiconductor die including at least one surface that is at least partially covered by a photopolymer material. The photopolymer material includes a plurality of discrete particles dispersed through a polymerized matrix. In some embodiments, the photopolymer material may cover at least a portion of each of a plurality of semiconductor dice attached to a substrate. Furthermore, the photopolymer material may cover only a portion of each of the plurality of semiconductor dice, and another photopolymer material may cover another portion of each of the plurality of semiconductor dice.
Abstract:
Microelectronic imager assemblies comprising a workpiece including a substrate and a plurality of imaging dies on and/or in the substrate. The substrate includes a front side and a back side, and the imaging dies comprise imaging sensors at the front side of the substrate and external contacts operatively coupled to the image sensors. The microelectronic imager assembly further comprises optics supports superimposed relative to the imaging dies. The optics supports can be directly on the substrate or on a cover over the substrate. Individual optics supports can have (a) an opening aligned with one of the image sensors, and (b) a bearing element at a reference distance from the image sensor. The microelectronic imager assembly can further include optical devices mounted or otherwise carried by the optics supports.
Abstract:
Methods of packaging microelectronic imagers and packaged microelectronic imagers. An embodiment of such a method can include providing an imager workpiece having a plurality of imager dies arranged in a die pattern and providing a cover substrate through which a desired radiation can propagate. The imager dies include image sensors and integrated circuitry coupled to the image sensors. The method further includes providing a spacer having a web that includes an adhesive and has openings arranged to be aligned with the image sensors. For example, the web can be a film having an adhesive coating, or the web itself can be a layer of adhesive. The method continues by assembling the imager workpiece with the cover substrate such that (a) the spacer is between the imager workpiece and the cover substrate, and (b) the openings are aligned with the image sensors. The attached web is not cured after the imager workpiece and the cover substrate have both been adhered to the web. As such, the web does not outgas contaminants into the compartments in which the image sensors are housed.
Abstract:
Methods for forming interconnects in blind holes and microelectronic workpieces having such interconnects are disclosed herein. One aspect of the invention is directed toward a method for manufacturing a microelectronic workpiece having microelectronic dies with integrated circuits and terminals electrically coupled to the integrated circuits. In one embodiment, the method includes forming a blind hole in the workpiece. The blind hole extends from a first exterior side of the workpiece to an intermediate depth in the workpiece. The method continues by forming a vent in the workpiece. The vent is in fluid communication with the blind hole. The method further includes constructing an electrically conductive interconnect in at least a portion of the blind hole.
Abstract:
Methods and apparatuses for transferring heat from stacked microfeature devices are disclosed herein. In one embodiment, a microfeature device assembly comprises a support member having terminals and a first microelectronic die having first external contacts carried by the support member. The first external contacts are operatively coupled to the terminals on the support member. The assembly also includes a second microelectronic die having integrated circuitry and second external contacts electrically coupled to the first external contacts. The first die is between the support member and the second die. The assembly can further include a heat transfer unit between the first die and the second die. The heat transfer unit includes a first heat transfer portion, a second heat transfer portion, and a gap between the first and second heat transfer portions such that the first external contacts and the second external contacts are aligned with the gap.
Abstract:
A contactor card assembly for use with a semiconductor substrate. An upper keeper plate and a lower keeper plate each include a number of conductive pins extending therethrough, situated in vias filled with an elastomeric material and extending beyond the keeper plates to contact a substrate for testing. An intermediate keeper plate is situated between the upper and lower keeper plates and includes conductive pivot bars in channels filled with elastomeric material. Each conductive pin contacts a pivot bar on one side thereof to electrically communicate with a corresponding pin on the opposite side. Under compression, variations in the height of contacts on the substrate under test are adjusted for by the movement of the pins and pivoting of the pivot bar in the elastomeric material. Methods and process for creating the keeper plates and semiconductor and testing assemblies are also included in the present invention.
Abstract:
An apparatus and method for treating a substrate to deposit, clean or etch material on a substrate use a first horizontal chuck to which a plurality of substrates is attached and electrically charged. Spaced closely to the first horizontal chuck is a coextensive horizontal second chuck which receives and showers reaction solution over all portions of each substrate. During the reaction process, both chucks are substantially submerged in reaction solution within a tank. At least one of the chucks is attached and controllable from a control arm. At least one of the chucks is rotated about a vertical axis at a slow speed during the reaction process. The axes of rotation of the two chucks may be coincident, or the axes may be offset from each other, and/or one or both axes may be offset from the chuck centerpoint(s). One of the chucks may also be periodically moved in a vertical direction relative to the other chuck.
Abstract:
A compliant contact pin assembly and a contactor card system are provided. A compliant contact pin assembly includes a contact pin formed from a portion of a substrate with the contact pin compliantly held suspended within the substrate by a compliant coupling structure. The suspension within the substrate results in a compliant deflection orthogonal to the plane of the substrate. The contact pin assembly is formed by generally thinning the substrate around the contact pin location and then specifically thinning the substrate immediately around the contact pin location for forming a void. The contact pin is compliantly coupled, in one embodiment by compliant coupling material, and in another embodiment by compliantly flexible portions of the substrate.
Abstract:
A compliant contact pin assembly and a contactor card system are provided. A compliant contact pin assembly includes a contact pin formed from a portion of a substrate with the contact pin compliantly held suspended within the substrate by a compliant coupling structure. The suspension within the substrate results in a compliant deflection orthogonal to the plane of the substrate. The contact pin assembly is formed by generally thinning the substrate around the contact pin location and then specifically thinning the substrate immediately around the contact pin location for forming a void. The contact pin is compliantly coupled, in one embodiment by compliant coupling material, and in another embodiment by compliantly flexible portions of the substrate.