Abstract:
Methods for HPC techniques are applied to the processing of site-isolated regions (SIR) on a substrate to form at least a portion of a TFT device used in display applications. The processing may be applied to at least one of gate electrode deposition, gate electrode patterning, gate dielectric deposition, gate dielectric patterning, metal-based semiconductor material (e.g. IGZO) deposition, metal-based semiconductor material (e.g. IGZO) patterning, etch stop deposition, etch stop patterning, source/drain deposition, source/drain patterning, passivation deposition, or passivation patterning. The SIRs may be defined during the deposition process with uniform deposition within each SIR or the SIRs may be defined subsequent to the deposition of layers wherein the layers are deposited with a gradient in one or more properties across the substrate.
Abstract:
Methods of forming absorber layers in a TFPV device are provided. Methods are described to provide the formation of metal oxide films and heating the metal oxide films in the presence of a chalcogen to form a metal-oxygen-chalcogen alloy. Methods are described to provide the formation of metal oxide films, forming a layer of elemental chalcogen on the metal oxide film, and heating the stack to form a metal-oxygen-chalcogen alloy. In some embodiments, the metal oxide film includes zinc oxide and the chalcogen includes selenium.
Abstract:
Methods and formulations for the selective etching of etch stop layers deposited above metal-based semiconductor layers used in the manufacture of TFT-based display devices are presented. The formulations are based on an alkaline solution. Methods and formulations for the selective etching of molybdenum-based and/or copper-based source/drain electrode layers deposited above metal-based semiconductor layers used in the manufacture of TFT-based display devices are presented. The formulations are based on an alkaline solution.
Abstract:
Light trapping and antireflection coatings are described, together with methods for preparing the coatings. An exemplary method comprises forming a light trapping coating on a substrate and a conformal antireflection coating on the light trapping coating. The light trapping coating comprises particles embedded in a support matrix having a thickness between about one third and two thirds of the mean particle size. The mean particle size is between about 10 μm and about 500 μm. The index of refraction of the particles and support matrix is substantially the same as the index of refraction of the substrate at wavelengths of interest. The index of refraction of the conformal antireflection coating is approximately equal the square root of the index of refraction of the substrate.
Abstract:
Methods are described for forming CIGS absorber layers in TFPV devices with graded compositions and graded band gaps. Methods are described for utilizing Al to increase the band gap at the front surface of the absorber layer. Methods are described for forming a Cu—In—Ga layer followed by partial or full selenization. This results in a higher Ga concentration at the back interface. The substrate is then exposed to an aluminum CVD precursor while the substrate is still in the selenization equipment to deposit a thin Al layer. The substrate is then exposed to a Se source to fully convert the absorber layer. This results in a higher Al concentration at the front of the absorber.
Abstract:
A method is disclosed for fabricating high efficiency CIGS solar cells including the deposition of a multi-component metal precursor film on a substrate. The substrate is then inserted into a system suitable for exposing the precursor to a chalcogen to form a chalcogenide TFPV absorber. One or more Na precursors are used to deposit a Na-containing layer on the precursor film in the system. This method eliminates the use of dedicated equipment and processes for introducing Na to the TFPV absorber.
Abstract:
A substrate having a plurality of site-isolated regions defined thereon is provided. A first electrochromic material, or a first electrochromic device stack, is formed above a first of the plurality of site-isolated regions using a first set of processing conditions. A second electrochromic material, or a second electrochromic device stack, is formed above a second of the plurality of site-isolated regions using a second set of processing conditions. The second set of processing conditions is different than the first set of processing conditions.
Abstract:
A gradient in the composition of at least one of the elements of a metal-based semiconductor layer is introduced as a function of depth through the layer. The gradient(s) influence the current density response of the device at different gate voltages. In some embodiments, the composition of an element (e.g. Ga) is greater at the interface between the metal-based semiconductor layer and the source/drain layers. The shape of the gradient profile is one of linear, stepped, parabolic, exponential, and the like.
Abstract:
In some embodiments, Cu—In—Ga precursor films are deposited by co-sputtering from multiple targets. Specifically, the co-sputtering method is used to form layers that include In. The co-sputtering reduces the tendency for the In component to agglomerate and results in smoother, more uniform films. In some embodiments, the Ga concentration in one or more target(s) is between about 25 atomic % and about 66 atomic %. The deposition may be performed in a batch or in-line deposition system. If an in-line deposition system is used, the movement of the substrates through the system may be continuous or may follow a “stop and soak” method of substrate transport.
Abstract:
Solar cells and methods for forming a back contact layer for a solar cell are disclosed. The methods comprise depositing a first layer comprising a conductor on a substrate, depositing a second layer on the first layer, the second layer comprising between about 1 nm and about 25 nm of a metal chalcogenide, and forming a third layer operable as an absorber layer on the second layer. The absorber layer can comprise a photoactive semiconductor layer. In some embodiments, the absorber layer comprises a chalcogenide of copper-indium-gallium. In some embodiments, the absorber layer comprises a chalcogenide of copper-zinc-tin. In some embodiments, the absorber layer comprises CdTe. In some embodiments, the metal comprises Mo, W or Ta. In some embodiments, the metal comprises Mo. In some embodiments, the chalcogenide comprises S or Se or a combination thereof.