Abstract:
Present embodiments include a lithium ion battery module and associated lithium ion battery cells. The lithium ion battery cells include a prismatic cell casing enclosing electrochemically active components. The cell thickness, the cell width, the cell length, and the electrochemically active components are such that the lithium ion battery cell has a volumetric energy density between 82 Watt-hours per Liter (Wh/L) and 153 Wh/L, and has a nominal voltage between 2.0 V and 4.2 V.
Abstract:
An electrochemical cell includes a cell element and a current collector disposed in a housing that includes a vent. The current collector includes an outer member and an inner member coupled together by one or more flexible arms. The outer member is coupled to the cell element and the inner member is coupled to the vent, such that the flexible arms allow axial movement of the inner member with respect to the outer member when the vent moves from an undeployed position to a deployed position. The housing may include a shoulder that holds the cell element in the housing. The electrochemical cell may also include a coil plate provided at an end of the cell element. The coil plate is coupled to an edge of at least one electrode of the cell element. The outer member of the current collector may be coupled to the coil plate and the inner member of the current collector may be coupled to the vent, such that when the vent moves from an undeployed position to a deployed position, the cell element remains substantially fixed within the housing.
Abstract:
The present disclosure relates to a battery module that includes a housing having a first protruding shelf along a first perimeter of the housing, a second protruding shelf along a second perimeter of the housing, where the first and second protruding shelves each include an absorptive material configured to absorb a first laser emission. The battery module also includes an electronics compartment cover configured to be coupled to the housing via a first laser weld, and a cell receptacle region cover configured to be coupled to the housing via a second laser weld. The electronics compartment cover has a first transparent material configured to transmit the first laser emission toward the first protruding shelf and the cell receptacle region cover has a second transparent material configured to transmit the first laser emission or a second laser emission toward the second protruding shelf.
Abstract:
The present disclosure includes a battery module having a housing with a cell receptacle region defined by walls of the housing and configured to enable passage of electrochemical cells therethrough. The battery module also includes a bus bar carrier sealed in the cell receptacle region. The bus bar carrier includes a perimeter having flexible ribs extending along at least a majority of the perimeter and configured to enable intimate contact between the walls of the housing and the perimeter of the bus bar carrier.
Abstract:
The present disclosure relates to a battery module that includes a stack of battery cells disposed in a housing, where each battery cell of the stack of battery cells has a terminal, and a bus bar having a body and an indicator disposed on the body, where the bus bar is configured to couple a first terminal of a first battery cell of the stack of battery cells to a second terminal of a second battery cell of the stack of battery cells. The battery module also includes a sensing component disposed on the indicator and configured to monitor a condition of at least one battery cell of the stack of battery cells and a weld physically and electrically coupling the sensing component to the bus bar.
Abstract:
The present disclosure relates to a battery module that includes a stack of battery cells, where each battery cell has a terminal, and the terminal has a first alloy of a metal. The battery module has a bus bar that includes a body having a second alloy of the metal, nickel plating on at least a portion of the body, and an indentation disposed on the body, where a thickness of the nickel plating is between 0.2% and 20% of an overall thickness of the body, and a weld physically and electrically coupling the respective terminal to the bus bar. The indentation has a depth between 10% and 90% of the overall thickness, an area of the indentation is between 5% and 20% of an overall area of the body, and the nickel plating enables the weld to be stronger than a weld between the first and second alloys.
Abstract:
The present disclosure relates to a battery module that includes a stack of battery cells, where each battery cell has a terminal, and the terminal has a first alloy of a metal. The battery module has a bus bar that includes a body having a second alloy of the metal, nickel plating on at least a portion of the body, and an indentation disposed on the body, where a thickness of the nickel plating is between 0.2% and 20% of an overall thickness of the body, and a weld physically and electrically coupling the respective terminal to the bus bar. The indentation has a depth between 10% and 90% of the overall thickness, an area of the indentation is between 5% and 20% of an overall area of the body, and the nickel plating enables the weld to be stronger than a weld between the first and second alloys.
Abstract:
A lithium ion battery module includes a battery cell stack disposed within a housing of the battery module. The stack includes a first battery cell, a second battery cell positioned adjacent to the first battery cell, and a battery cell separator fitted over the first battery cell. The battery cell separator includes a plurality of walls formed from a continuous material and defining a pocket in which the first battery cell is disposed. The plurality of walls is configured to electrically insulate the first cell from the second cell. The separator also includes a projection extending from a wall of the plurality of walls, the projection is positioned between a terminal of the first battery cell and a terminal of the second battery cell and is configured to electrically insulate the terminals from one another.
Abstract:
A lithium ion (Li-ion) battery module includes a container with one or more partitions that define compartments within the container. Each of the compartments is configured to receive and hold a prismatic Li-ion electrochemical cell element, and a cover is configured to be disposed over the container to close the compartments. The container includes a polymer blend including a base polymer and one or more additives blended into the base polymer. The base polymer is electrically nonconductive and the one or more additives are configured to increase a thermal conductivity of the container to promote transfer of heat generated from the electrochemical cell elements through the container.
Abstract:
A lithium-ion battery cell includes an enclosure that includes a casing and a lid. The enclosure has an electrolyte fill hole disposed on a surface of the casing opposite the lid. An electrochemical cell is disposed within the enclosure. Additionally, a sealing patch is laser welded to the surface of the casing around the electrolyte fill hole, wherein the sealing patch is configured to seal the electrolyte fill hole.