摘要:
The present invention provides a method of fabricating a semiconductor substrate and a method of fabricating a light emitting device. The method includes forming a first semiconductor layer on a substrate, forming a metallic material layer on the first semiconductor layer, forming a second semiconductor layer on the first semiconductor layer and the metallic material layer, wherein a void is formed in a first portion of the first semiconductor layer under the metallic material layer during formation of the second semiconductor layer, and separating the substrate from the second semiconductor layer by etching at least a second portion of the first semiconductor layer using a chemical solution.
摘要:
A light-emitting device operating on a high drive voltage and a small drive current. LEDs (1) are two-dimensionally formed on an insulating substrate (10) of e.g., sapphire monolithically and connected in series to form an LED array. Two such LED arrays are connected to electrodes (32) in inverse parallel. Air-bridge wiring (28) is formed between the LEDs (1) and between the LEDs (1) and electrodes (32). The LED arrays are arranged zigzag to form a plurality of LEDs (1) to produce a high drive voltage and a small drive current. Two LED arrays are connected in inverse parallel, and therefore an AC power supply can be used as the power supply.
摘要:
The present invention provides a method of fabricating a semiconductor substrate and a method of fabricating a light emitting device. The method includes forming a first semiconductor layer on a substrate, forming a metallic material layer on the first semiconductor layer, forming a second semiconductor layer on the first semiconductor layer and the metallic material layer, wherein a void is formed in a first portion of the first semiconductor layer under the metallic material layer during formation of the second semiconductor layer, and separating the substrate from the second semiconductor layer by etching at least a second portion of the first semiconductor layer using a chemical solution.
摘要:
Exemplary embodiments of the present invention provide a method of fabricating a semiconductor substrate, the method including forming a first semiconductor layer on a substrate, forming a metallic material layer on the first semiconductor layer, forming a second semiconductor layer on the first semiconductor layer and the metallic material layer, etching the substrate using a solution to remove the metallic material layer and a portion of the first semiconductor layer, and forming a cavity in the first semiconductor layer under where the metallic material layer was removed.
摘要:
A light-emitting device operating on a high drive voltage and a small drive current. LEDs (1) are two-dimensionally formed on an insulating substrate (10) of e.g., sapphire monolithically and connected in series to form an LED array. Two such LED arrays are connected to electrodes (32) in inverse parallel. Air-bridge wiring (28) is formed between the LEDs (1) and between the LEDs (1) and electrodes (32). The LED arrays are arranged zigzag to form a plurality of LEDs (1) to produce a high drive voltage and a small drive current. Two LED arrays are connected in inverse parallel, and therefore an AC power supply can be used as the power supply.
摘要:
A light-emitting apparatus employing a GaN-based semiconductor. The light-emitting apparatus comprises an n-type clad layer (124); an active layer (129) including an n-type first barrier layer (126), well layers (128), and second barrier layers (130); a p-type block layer (132); and a p-type clad layer (134). By setting the band gap energy Egb of the p-type block layer (132), the band gap energy Eg2 of the second barrier layers (130), the band gap energy Eg1 of the first barrier layer (126), and the band gap energy Egc of the n-type and the p-type clad layers such that the relationship Egb>Eg2>Eg1≧Egc is satisfied; the carriers can be efficiently confined; and the intensity of the light emission can be increased.
摘要:
For a light emitting device using gallium nitride (GaN), on a substrate are sequentially formed a GaN-based layer, an AlGaN-based layer, and a light emitting layer. To prevent cracks in the AGaN-based layer, the AlGaN-based layer is formed before planarization of the surface of the GaN layer on a surface of the GaN layer which is not planar. For a laser, the AlGaN-based layers serve as clad layers which sandwich the light emitting layer.
摘要:
In order to provide a method for easily roughening a surface of a semiconductor constituting an LED, a first material 18 and a second material 20 having a property that they are nonuniformly mixed when thermally treated are deposited on a semiconductor 16, the structure is thermally treated, and etching is performed through reactive ion etching in which the etching rate with respect to the first material 18 is slower than the etching rates with respect to the second material 20 and to the semiconductor 16. During this process, a region 22 in which the first material 18 is the primary constituent functions as an etching mask, and a predetermined roughness can be easily formed on the surface of the semiconductor 16.
摘要:
A method for manufacturing a GaN compound semiconductor which can improve light emitting efficiency even when dislocations are present. An n type AlGaN layer, a undoped AlGaN layer, and a p type AlGaN layer are laminated on a substrate to obtain a double hetero structure. When the undoped AlGaN layer is formed, droplets of Ga or Al are formed on the n type AlGaN layer. The compositional ratio of Ga and Al in the undoped AlGaN layer varies due to the presence of the droplets, creating a spatial fluctuation in the band gap. Because of the spatial fluctuation in the band gap, the percentage of luminous recombinations of electrons and holes is increased.
摘要:
Yellow or oriental mustard seed can be fractionated to produce allyl isothiocyanate and p-hydroxybenzyl isothiocyanate, along with prepared mustard products, mustard protein and dietary fiber. Processes for the production of these various fractions from mustard seed stock are disclosed. The seed stock is comminuted with water to yield an activated slurry in which the enzyme myrosinase hydrolyses and deteriorates glycosinolates in the seed stock to isothiocyanates. Remaining slurry can then be sterilized and further conventionally processed to yield improved finished mustard products.