摘要:
For a light emitting device using gallium nitride (GaN), on a substrate are sequentially formed a GaN-based layer, an AlGaN-based layer, and a light emitting layer. To prevent cracks in the AGaN-based layer, the AlGaN-based layer is formed before planarization of the surface of the GaN layer on a surface of the GaN layer which is not planar. For a laser, the AlGaN-based layers serve as clad layers which sandwich the light emitting layer.
摘要:
A production method of a GaN-based compound semiconductor having excellent crystallinity and a GaN-based semiconductor device produced therefrom. A discrete SiN buffer body is formed on a substrate, and a GaN buffer layer is formed thereon at low temperatures and a GaN semiconductor layer is then formed at high temperatures. By forming the discrete SiN buffer body, the crystal growth, which is dependent on the substrate, of the low-temperature buffer layer is inhibited and monocrystallization is promoted to generate seed crystals used at the time of growing the GaN buffer layer. Further, by forming SiO2 discretely between the substrate and the SiN buffer body or by forming InGaN or a superlattice layer on the GaN semiconductor layer, distortion of the GaN semiconductor layer is reduced.
摘要:
Provided is a spectrum detector capable of being miniaturized and which does not require complicated optical axis alignment. The spectrum detector of the present invention comprises: a substrate; a photodetector formed on the substrate and including a semiconductor having a plurality of convex portions; and a wavelength detection circuit for detecting a wavelength of light transmitted through the plurality of convex portions, from light incident on the photodetector. According to the present invention, a small-sized spectrum detector can be provided which can easily detect a peak wavelength distribution included in light of an unknown wavelength, without the use of optical equipment such as a grating or prism, thus dispensing with the need for the optical axis alignment of a complex optical system.
摘要:
A method of fabricating a semiconductor substrate, includes forming a first semiconductor layer on a substrate, forming a metallic material layer on the first semiconductor layer, forming a second semiconductor layer on the first semiconductor layer and the metallic material layer, etching the substrate using a solution to remove the metallic material layer and a portion of the first semiconductor layer, and forming a cavity in the first semiconductor layer under where the metallic material layer was removed.
摘要:
Embodiments of the invention provide a crystalline aluminum carbide layer, a laminate substrate having the crystalline aluminum carbide layer formed thereon, and a method of fabricating the same. The laminate substrate has a GaN layer including a GaN crystal and an AlC layer including an AlC crystal. Further, the method of fabricating the laminate substrate, which has the AlN layer including the AlN crystal and the AlC layer including the AlC crystal, includes supplying a carbon containing gas and an aluminum containing gas to grow the AlC layer.
摘要:
An operating valve of the present invention is a differential pressure operating valve 100 for performing a vacuum suction of a substrate, the operating valve comprises a body 4 having an opening which is provided at an exhaust side for exhausting an air from an inside to an outside and is opposed to a suction side for sucking the air from the outside to the inside, a valve 8, and a spring 9 whose one end is connected with one of the suction side and the exhaust side of the body 4 and the other end is connected with the valve 8. The spring 9 is configured to stretch or compress in accordance with a differential pressure between the suction side and the exhaust side, and the valve 8 is provided with at least one hole.
摘要:
A laser diode having nano patterns is disposed on a substrate. A first conductive-type clad layer is disposed on the substrate, and a second conductive-type clad layer is disposed on the first conductive-type clad layer. An active layer is interposed between the first conductive-type clad layer and the second conductive-type clad layer. Column-shaped nano patterns are arranged at a surface of the second conductive-type clad layer to form a laser diode such as a distributed feedback laser diode.
摘要:
The present invention provides a method of fabricating a semiconductor substrate and a method of fabricating a light emitting device. The method includes forming a first semiconductor layer on a substrate, forming a metallic material layer on the first semiconductor layer, forming a second semiconductor layer on the first semiconductor layer and the metallic material layer, wherein a void is formed in a first portion of the first semiconductor layer under the metallic material layer during formation of the second semiconductor layer, and separating the substrate from the second semiconductor layer by etching at least a second portion of the first semiconductor layer using a chemical solution.
摘要:
A light-emitting device operating on a high drive voltage and a small drive current. LEDs (1) are two-dimensionally formed on an insulating substrate (10) of e.g., sapphire monolithically and connected in series to form an LED array. Two such LED arrays are connected to electrodes (32) in inverse parallel. Air-bridge wiring (28) is formed between the LEDs (1) and between the LEDs (1) and electrodes (32). The LED arrays are arranged zigzag to form a plurality of LEDs (1) to produce a high drive voltage and a small drive current. Two LED arrays are connected in inverse parallel, and therefore an AC power supply can be used as the power supply.
摘要:
A light-emitting device operating on a high drive voltage and a small drive current. LEDs (1) are two-dimensionally formed on an insulating substrate (10) of e.g., sapphire monolithically and connected in series to form an LED array. Two such LED arrays are connected to electrodes (32) in inverse parallel. Air-bridge wiring (28) is formed between the LEDs (1) and between the LEDs (1) and electrodes (32). The LED arrays are arranged zigzag to form a plurality of LEDs (1) to produce a high drive voltage and a small drive current. Two LED arrays are connected in inverse parallel, and therefore an AC power supply can be used as the power supply.