Abstract:
A method of operating a hydraulic brake system is described. A method of operating a hydraulic brake system of a motor vehicle having a mechatronic brake booster to boost a hydraulic pressure generated in a brake master cylinder of the brake system by a brake pedal of the motor vehicle determines whether a propulsion request is present during operation of the motor vehicle and actuates the mechatronic brake booster when a propulsion request has ended or been substantially reduced. During a predetermined time interval after the propulsion request has ended or been reduced, the mechatronic brake booster is operated at a minimum intensity such that no braking effect occurs during the predetermined time interval, unless a braking request occurs.
Abstract:
Methods of assessing driver behavior include monitoring vehicle systems and driver monitoring systems to accommodate for a driver's slow reaction time, attention lapse and/or alertness. When it is determined that a driver is drowsy, for example, the response system may modify the operation of one or more vehicle systems. The systems that may be modified include: visual devices, audio devices, tactile devices, antilock brake systems, automatic brake prefill systems, brake assist systems, auto cruise control systems, electronic stability control systems, collision warning systems, lane keep assist systems, blind spot indicator systems, electronic pretensioning systems and climate control systems.
Abstract:
An accelerator pedal operated braking system for an automatic transmission vehicle; said braking system including monitoring of angular data and angular rate of change data of an accelerator pedal of said vehicle; said system further including a control module and an actuator acting on the brake pedal of said vehicle; said braking system responsive to said angular data and angular rate of change data.
Abstract:
A method for operating a self-propelled agricultural machine that has a traction drive, a service brake, a control and a man machine interface including an accelerator pedal and a brake pedal, where a user actuation of the brake pedal causes the service brake to be operated. The method includes monitoring the user actuation of the accelerator pedal by the control to detect a brake indication, which is a predetermined indication for an approaching user actuation of the brake pedal. Upon detecting a brake indication, the control implements at least one preparatory measure by the control for the preparation of a user actuation of the brake pedal. The implemented preparatory measure alone does not have a braking effect on the agricultural machine.
Abstract:
In one embodiment, the invention provides a method for controlling a vehicle brake system while the vehicle is in reverse. The method includes prefilling the brake system upon detecting an object in the vehicle's path. If the vehicle continues to move toward the detected object and a first threshold is reached, light braking is applied. If the vehicle continues to move toward the detected object and a second threshold is reached, heavier braking up to full braking is applied to prevent the vehicle from colliding with the object.
Abstract:
A method of decelerating a vehicle equipped with both regenerative powertrain braking from a motor/generator and friction braking from fluid pumped through a brake circuit. A deceleration demand is received, and regenerative braking torque is ramped up in response to the deceleration demand. The brake circuit is pre-charged during the ramping up of regenerative braking torque. Pre-charging the brake circuit includes pumping fluid to at least one wheel cylinder braking device to reduce the required pump speed and resulting noise for any subsequent braking demand on the brake circuit. The pump is actuated to operate at a predetermined speed that maintains noise and vibration below predetermined levels.
Abstract:
A brake controlling unit detects a brake actuation object based on images captured by a running environment recognizing unit and sets a target brake pre-pressure actuation distance based on a relative speed between the brake actuation object and a subject vehicle. When an actual distance between the subject vehicle and the brake actuation object reaches the target brake pre-pressure actuation distance, the brake controlling unit outputs to a brake driving unit a driving signal that generates a brake pre-pressure to make the brake clearance of a brake minimal.
Abstract:
A brake fill effect minimization function for preventing or reducing brake controller windup during a brake fill condition or the like that may commonly occur in hydraulic or electromechanical brake systems, particularly during initial application of the brakes or during anti-skid conditions. The function temporarily reduces error input to the brake controller during a perceived brake fill condition (hydraulic brakes) or running clearance condition (electromechanical brakes) thereby facilitating smooth application of the brakes during initial braking and/or under anti-skid conditions.
Abstract:
In a method of changing the trigger threshold of a brake stand-by function of a vehicle brake, the brake stand-by function generates brake pressure in wheel brakes without application of a brake pedal. The trigger threshold value for the brake stand-by function is determined by the following steps: a) determining an average return speed of an accelerator pedal; b) changing the trigger threshold value for the brake stand-by function depending on the determined average return speed of the accelerator pedal. The method allows reducing the number of spurious releases of the brake stand-by function, which a sportive driving style brings about.In another embodiment of the method, the position of the accelerator pedal is used to change the trigger threshold value for the brake stand-by function.
Abstract:
The present invention makes an improved braking system available. This comprises a brake pedal and/or a servo unit and also incorporates a hydraulic unit including an integrated electronic controller (for short: EBS) and a hydraulically actuated wheel brake associated with each wheel. Hereby, the wheel brakes are connected hydraulically to the electronic hydraulic unit as is also the brake pedal/servo unit. A brake cylinder for the wheel brake is arranged to be prefilled by means of a “prefill” function in order to at least partly reduce the clearance gap. For the first time hereby, the braking system is provided with a switching device by means of which the “prefill” function is arranged to be switched on or off in dependence on a selectable operating mode. Moreover, the invention proposes a method for electronically regulating the brakes utilizing such a braking system.