摘要:
The present technology provides for a microfluidic substrate configured to carry out PCR on a number of polynucleotide-containing samples in parallel. The substrate can be a single-layer substrate in a microfluidic cartridge. Also provided are a method of making a microfluidic cartridge comprising such a substrate. Still further disclosed are a microfluidic valve suitable for use in isolating a PCR chamber in a microfluidic substrate, and a method of making such a valve.
摘要:
The technology described herein generally relates to systems for extracting polynucleotides from multiple samples, particularly from biological samples, and additionally to systems that subsequently amplify and detect the extracted polynucleotides. The technology more particularly relates to microfluidic systems that carry out PCR on multiple samples of nucleotides of interest within microfluidic channels, and detect those nucleotides.
摘要:
The present technology provides for a heater substrate that contains networks of heater elements configured to controllably and selectively deliver heat to one or more PCR reaction chambers in a microfluidic substrate with which the heater substrate makes contact. In exemplary embodiments, the heater substrate can deliver heat to 12, 24, 48, or 96 chambers independently of one another, or simultaneously. The heater substrate is located in a heater unit that may be introduced into a diagnostic apparatus that can receive and position a microfluidic substrate, such as in a cartridge, in contact with the heater unit, receive one or more polynucleotide containing samples into one or more lanes in the microfluidic substrate, and cause amplification of the polynucleotides to occur, and detect presence of absence of specified polynucleotides in the amplified samples.
摘要:
Methods and systems for preparing polynucleotide samples are disclosed. The invention includes a microfluidic system for converting a sample containing one or more polynucleotides into a form suitable for analyzing the polynucleotides, comprising: a cartridge receiving element, an insertable and removable cartridge, a heating element configured to heat one or more regions of the cartridge, and control circuitry, wherein the insertable cartridge comprises: a microfluidic component that is configured to accept the sample and one or more reagents, and to react the sample and the reagents, in order to produce a prepared sample suitable for analyzing the one or more polynucleotides. The invention further comprises a multi-sample cartridge for converting a number of samples, each containing one or more polynucleotides, into respective forms suitable for analyzing the polynucleotides, comprising: at least a first microfluidic component and a second microfluidic component.
摘要:
A container for a liquid reagent, wherein the container has an outer wall and an internal piercing member, such that, upon application of pressure to the outer wall of the container, the internal piercing member punctures the container from the inside, thereby liberating the liquid contained therein. Such a container is configured to store the liquid for periods between 6 to 18 months with minimal loss of the liquid inside, other than if the container is ruptured. Such a container is also configured to require a particular force to be applied to the outer wall to cause the internal piercing member to puncture the container, such a force being greater than that ordinarily experienced by the container during routine storage, transport, or handling. The container is preferably adapted for use with a microfluidic cartridge.
摘要:
The present invention provides control methods, control systems, and control software for microfluidic devices that operate by moving discrete micro-droplets through a sequence of determined configurations. Such microfluidic devices are preferably constructed in a hierarchical and modular fashion which is reflected in the preferred structure of the provided methods and systems. In particular, the methods are structured into low-level device component control functions, middle-level actuator control functions, and high-level micro-droplet control functions. Advantageously, a microfluidic device may thereby be instructed to perform an intended reaction or analysis by invoking micro-droplet control function that perform intuitive tasks like measuring, mixing, heating, and so forth. The systems are preferably programmable and capable of accommodating microfluidic devices controlled by low voltages and constructed in standardized configurations. Advantageously, a single control system can thereby control numerous different reactions in numerous different microfluidic devices simply by loading different easily understood micro-droplet programs.
摘要:
A holder for reagents, such as may be used for transporting the reagents and for carrying out processing operations on biological samples with the reagents. The holders typically hold reagents for amplifying polynucleotides extracted from the samples. The holder comprises a connecting member; a process tube affixed to the connecting member and having an aperture located in the connecting member; at least one socket, located in the connecting member, and configured to accept a pipette tip; two or more reagent tubes disposed on the underside of the connecting member, each having an inlet aperture located in the connecting member; and one or more receptacles, located in the connecting member and each being configured to receive a reagent tube. Also described are reagent tubes configured with stellated shaped patterns, on their bottom interior surfaces, configured to facilitate complete or near-complete withdrawal of fluid from the tube, via a pipette tip.
摘要:
An apparatus for providing thermal and magnetic energy to a receptacle containing a reaction mixture and a magnetic retention member. The apparatus can also control heating of a reaction mixture, and bring about a separation of magnetic particles from the reaction mixture. The reaction mixture typically comprises polynucleotides from a biological sample that are being brought into a PCR-ready form.