Abstract:
A packaging substrate having an embedded through-via interposer is provided, including an encapsulant layer, a through-via interposer embedded in the encapsulant layer and having a plurality of conductive through-vias therein, a redistribution layer embedded in the encapsulant layer and formed on the through-via interposer so as to electrically connect with first end surfaces of the conductive through-vias, and a built-up structure formed on the encapsulant layer and the through-via interposer for electrically connecting second end surfaces of the conductive through-vias. As such, the first end surfaces of the conductive through-vias of the through-via interposer are electrically connected to the redistribution layer to thereby be electrically connected to electrode pads of a semiconductor chip having smaller pitches, while the second end surfaces of the conductive through-vias electrically connect with conductive vias of the built-up structure having larger pitches, thereby allowing the packaging substrate to be coupled with the semiconductor chip having high-density circuits.
Abstract:
A package structure having an embedded semiconductor component, includes: a chip having an active surface with electrode pads and an inactive surface opposite to the active surface; a first insulating protection layer having a chip mounting area for the chip to be mounted thereon via the active surface thereof; a plurality of connection columns disposed in the first insulating protection layer at positions corresponding to the electrode pads and electrically connected to the electrode pads via solder bumps; an encapsulant formed on one surface of the first insulating protection layer having the chip mounted thereon for encapsulating the chip; and a built-up structure formed on the other surface of the first insulating protection layer and the connection columns. Due to the bending resistance of the encapuslant, the warpage of the built-up structure is prevented.
Abstract:
A method for fabricating a packaging structure having an embedded semiconductor element includes: providing a substrate having opposite first and second surfaces and at least an opening penetrating the first and second surfaces; forming a first metallic frame around the periphery of the opening on the first surface; forming at least an opening inside the first metallic frame by laser ablation; disposing a semiconductor chip in the opening; forming a first dielectric layer on the first and second surfaces and the chip; forming a first wiring layer on the first dielectric layer of the first surface; and forming a first built-up structure on the first dielectric layer and the first wiring layer of the first surface. A shape of the opening is precisely controlled through the first metallic frame around the periphery of the predefined opening region, thereby allowing the chip to be precisely embedded in the substrate.
Abstract:
A package structure having an embedded electronic component includes: a carrier having a cavity penetrating therethrough; a semiconductor chip received in the cavity and having solder bumps disposed thereon; a dielectric layer formed on the carrier and the semiconductor chip so as to encapsulate the solder bumps; a wiring layer formed on the dielectric layer; an insulating protection layer formed on the dielectric layer and the wiring layer; and a solder material formed in the dielectric layer and the insulating protection layer for electrically connecting the wiring layer and the solder bumps, thereby shortening the signal transmission path between the semiconductor chip and the carrier to avoid signal losses.
Abstract:
A packaging substrate and a fabrication method thereof are disclosed. The packaging substrate includes: a substrate body having a plurality of first and second conductive pads formed on a surface thereof; a first insulating layer formed on the surface of the substrate body and having a plurality of first and second openings for respectively exposing the first and second conductive pads; a conductive layer formed on the first and second conductive pads and the first insulating layer around peripheries of the first and second conductive pads; a plurality of first and second conductive bumps formed on the conductive layer on the first and second conductive pads, respectively; a solder layer formed on the second conductive bumps; and a plurality of conductive posts formed on the first conductive bumps and having a width different from that of the first conductive bumps. The invention improves the fabrication efficiency.
Abstract:
A method for fabricating a circuit board structure having at least an embedded electronic element is disclosed, which includes the steps of: providing a substrate and embedding at least an electronic element in the substrate with an active surface and a plurality of electrode pads of the electronic element exposed from a surface of the substrate; forming a plurality of conductive bumps on the electrode pads of the electronic element; and covering the surface of the substrate and the active surface of the electronic element with a dielectric layer and a metal layer stacked on the dielectric layer, wherein the conductive bumps penetrate the dielectric layer so as to be in contact with the metal layer, thereby simplifying the fabrication process, reducing the fabrication cost and saving the fabrication time.
Abstract:
A package substrate and a method for forming the package substrate are disclosed. The package substrate includes an interposer having a plurality of conductive through vias and a first insulating layer formed on the sidewalls of the conductive through vias, a second insulating layer formed on one side of the interposer, and a plurality of conductive vias formed in the second insulating layer and electrically connected to the conductive through vias. By increasing the thickness of the first insulating layer, the face diameter of the conductive through vias can be reduced, and the layout density of the conductive through vias in the interposer can thus be increased.
Abstract:
A package substrate and a method of fabricating the package substrate are provided. The package substrate may include an interposer having at least one conductive through via, a photo-sensitive dielectric layer formed on one side of the interposer, and at least one conductive via formed in the photo-sensitive dielectric layer and electrically connected to the conductive through via. By means of a photo lithography process with high alignment accuracy, at least one via with an extremely small diameter can be formed on the photo-sensitive dielectric layer and align with the conductive through via. Therefore, the conductive through via can have its diameter reduced as required, without considering the alignment with the at least one via. Accordingly, the interconnection density of the conductive through via on the interposer is increased.
Abstract:
A through-holed interposer is provided, including a board body, a conductive gel formed in the board body, and a circuit redistribution structure disposed on the board body. The conductive gel has one end protruding from a surface of the board body, and an area of the protruded end of the conductive gel that is in contact with other structures (e.g., packaging substrates or circuit structures) is increased, thereby strengthening the bonding of the conductive gel and reliability of the interposer.
Abstract:
A package structure having an embedded semiconductor component, includes: a chip having an active surface with electrode pads and an inactive surface opposite to the active surface; a first insulating protection layer having a chip mounting area for the chip to be mounted thereon via the active surface thereof; a plurality of connection columns disposed in the first insulating protection layer at positions corresponding to the electrode pads and electrically connected to the electrode pads via solder bumps; an encapsulant formed on one surface of the first insulating protection layer having the chip mounted thereon for encapsulating the chip; and a built-up structure formed on the other surface of the first insulating protection layer and the connection columns. Due to the bending resistance of the encapsulant, the warpage of the built-up structure is prevented.