Abstract:
An electroplating apparatus has a vessel for holding electrolyte. A head has a rotor including a contact ring for holding a wafer having a notch. The contact ring includes a perimeter voltage ring having perimeter contact fingers for contacting the wafer around the perimeter of the wafer, except at the notch. The contact ring also has a notch contact segment having one or more notch contact fingers for contacting the wafer at the notch. The perimeter voltage ring is insulated from the notch contact segment. A negative voltage source is connected to the perimeter voltage ring, and a positive voltage source connected to the notch contact segment. The positive voltage applied at the notch reduces the current crowding effect at the notch. The wafer is plated with a film having more uniform thickness.
Abstract:
An electroplating system includes a processor has a vessel having a first or upper compartment and a second or lower compartment containing catholyte and anolyte, respectively, with an processor anionic membrane between them. An inert anode is located in the second compartment. A replenisher is connected to the vessel via catholyte return and supply lines and anolyte return and supply lines, to circulate catholyte and anolyte through compartments in the replenisher separated by a replenisher anionic membrane. The replenisher adds metal ions into the catholyte by moving ions from a bulk metal source, and moves anions from the anolyte through the anionic membrane and into the catholyte. Concentrations or metal ions and anions in the catholyte and the anolyte remain balanced.
Abstract:
Electric potential, current density, agitation, and deposition rate are controlled to deposit metal alloys, such as tin based solder alloys or magnetic alloys, with minimal variations in the weight ratios of alloying metals at different locations within the deposited metal alloy feature. Alternative embodiments include processes that form metal alloy features wherein the variation in weight ratio of alloying metals within the feature is not necessarily minimized, but is controlled to provide a desired variation. In addition to metal alloys, alternative embodiments include processes for improving the deposition of single metal features.
Abstract:
An electro-processing apparatus has a contact ring including a seal which is able to compensate for electric field distortions created by a notch (or other irregularity) on the wafer or work piece. The shape of the contact ring at the notch is changed, to reduce current crowding at the notch. The change in shape changes the resistance of the current path between a thief electrode and the wafer edge to increase thief electrode current drawn from the region of the notch. As a result, the wafer is plated with a film having more uniform thickness.
Abstract:
A method of plating substrates may include placing a substrate in a plating chamber comprising a liquid, and applying a current to the liquid in the plating chamber to deposit a metal on exposed portions of the substrate, where the current may include alternating cycles of a forward plating current and a reverse deplating current. To determine the current characteristics, a model of a substrate may be simulated during the plating process to generate data points that relate characteristics of the plating process and a pattern on the substrate to a range nonuniformity of material formed on the substrate during the plating process. Using information from the data points, values for the forward and reverse currents may be derived and provided to the plating chamber to execute the plating process.
Abstract:
Systems and methods for electroplating are described. The electroplating system may include a vessel configured to hold a first portion of a liquid electrolyte. The system may also include a substrate holder configured for holding a substrate in the vessel. The system may further include a first reservoir in fluid communication with the vessel. In addition, the system may include a second reservoir in fluid communication with the vessel. Furthermore, the system may include a first mechanism configured to expel a second portion of the liquid electrolyte from the first reservoir into the vessel. The system may also include a second mechanism configured to take in a third potion of the liquid electrolyte from the vessel into the second reservoir when the second portion of the liquid electrolyte is expelled from the first reservoir. Methods may include oscillating flow of the electrolyte within the vessel.
Abstract:
Embodiments of the present technology include electroplating methods that include providing a first portion of an electrolyte feedstock to a first compartment of an electrochemical cell. The first portion of an electrolyte feedstock may be characterized by an initial metal ion concentration and an initial acid concentration. The methods may include providing a second portion of an electrolyte feedstock to a second compartment of the electrochemical cell. The second compartment and first compartment may be separated by a first membrane. The methods may include providing an acidic solution to a third compartment of the electrochemical cell. The third compartment and second compartment may be separated by a second membrane. The acidic solution may be characterized by an initial acid concentration. The methods may include applying a current to an anode of the electrochemical cell. The anode of the electrochemical cell may be disposed proximate the first compartment and across from the first membrane.
Abstract:
Electroplating systems may include an electroplating chamber. The systems may also include a replenish assembly fluidly coupled with the electroplating chamber. The replenish assembly may include a first compartment housing anode material. The first compartment may include a first compartment section in which the anode material is housed and a second compartment section separated from the first compartment section by a divider. The replenish assembly may include a second compartment fluidly coupled with the electroplating chamber and electrically coupled with the first compartment. The replenish assembly may also include a third compartment electrically coupled with the second compartment, the third compartment including an inert cathode.
Abstract:
Exemplary electroplating systems may include a vessel. The systems may include a paddle disposed within the vessel. The paddle may be characterized by a first surface and a second surface. The first surface of the paddle may be include a plurality of ribs that extend upward from the first surface. The plurality of ribs may be arranged in a generally parallel manner about the first surface. The paddle may define a plurality of apertures through a thickness of the paddle. Each of the plurality of apertures may have a diameter of less than about 5 mm. The paddle may have an open area of less than about 15%.
Abstract:
Systems and methods for electroplating are described. The electroplating system may include a vessel configured to hold a first portion of a liquid electrolyte. The system may also include a substrate holder configured for holding a substrate in the vessel. The system may further include a first reservoir in fluid communication with the vessel. In addition, the system may include a second reservoir in fluid communication with the vessel. Furthermore, the system may include a first mechanism configured to expel a second portion of the liquid electrolyte from the first reservoir into the vessel. The system may also include a second mechanism configured to take in a third potion of the liquid electrolyte from the vessel into the second reservoir when the second portion of the liquid electrolyte is expelled from the first reservoir. Methods may include oscillating flow of the electrolyte within the vessel.