摘要:
An index-guided buried heterostructure AlGalnN laser diode provides improved mode stability and low threshold current when compared to conventional ridge waveguide structures. A short period superlattice is used to allow adequate cladding layer thickness for confinement without cracking. The intensity of the light lost due to leakage is reduced by about 2 orders of magnitude with an accompanying improvement in the far-field radiation pattern when compared to conventional structures.
摘要:
Various asymmetric InGaAsN VCSEL structures that are made using an MOCVD process are presented. Use of the asymmetric structure effectively eliminates aluminum contamination of the quantum well active region.
摘要:
A distributed feedback structure includes a substrate material. An active layer has an alloy including at least one of aluminum, gallium, indium, and nitrogen. A first cladding, having an alloy including at least one of the aluminum, the gallium, the indium, and the nitrogen, is on a first side of the active layer. A second cladding, having an alloy including at least one of the aluminum, the gallium, the indium, and the nitrogen, is on a second side of the active layer. Periodic variations of refractive indices in at least one of the first and second claddings provide a distributed optical feedback.
摘要:
A structure and method for an asymmetric waveguide nitride laser diode without need of a p-type waveguide is disclosed. The need for a high aluminum tunnel barrier layer in the laser is avoided.
摘要:
A method for placing nitride laser diode arrays on a thermally conducting substrate is described. The method uses an excimer laser to detach the nitride laser diode from the sapphire growth substrate after an intermediate substrate has been attached to the side opposite the sapphire substrate. A thermally conducting substrate is subsequently bonded to the side where the sapphire substrate was removed.
摘要:
The present invention relates to electronic devices formed in crystallites of III-V nitride materials. Specifically, the present invention simplifies the processing technology required for the fabrication of high-performance electronic devices in III-V nitride materials.
摘要:
Methods for defect-free impurity-induced laser disordering (IILD) of AlGaInP and AlGaAs heterostructures. Phosphorus-doped or As-doped films are used in which silicon serves as a diffusion source and silicon nitride acts as a barrier for selective IILD. High-performance, index-guided (AlGa).sub.0.5 In.sub.0.5 P lasers may be fabricated with this technique, analogous to those made in the AlGaAs material system. The deposition of the diffusion source films preferably is carried out in a low pressure reactor. Also disclosed is a scheme for reducing or eliminating phosphorus overpressure during silicon diffusion into III-V semiconducting material by adding a pre-diffusion anneal step. Defects produced during intermixing are also reduced using a GaInP or GaInP/GaAs cap.
摘要:
A QW diode laser generating orthogonally polarized multiple beams. The device incorporates quantum well active regions capable of, transitions to heavy hole and light hole band edges. The heavy hole transition provides TE-mode gain, while the light hole band provides mostly TM-mode gain. By controlling the compositions and thicknesses of the active regions, both modes can be obtained in a monolithic structure. In addition, the resulting laser polarization will be very sensitive to the threshold carrier density. With an intracavity loss modulator in such a structure, the polarization can also be controlled. Other ways of causing side-by-side lasers to operate, respectively, in their TE or TM modes are also described.
摘要:
Ridged waveguide and selectively-buried ridged waveguide, index-guided, visible semiconductor lasers incorporating a lattice-mismatched, preferably tensile-strained, etch-stop layer in the design and fabrication of the laser. Compared with other structures with etch-stop layers that are lattice matched, the etch-stop layer of the invention would have greater etch-rate selectivity, and the resulting structure would be more optically transparent with less transverse mode distortion and would present fewer difficulties with layer regrowth. These advantages would translate into greater design flexibility, more reliable fabrication, and better device performance. A preferred material for the etch-stop layer is Ga.sub.x In.sub.1-x P (x>0.5).
摘要:
A semiconductor device includes a III-nitride substrate having a first conductivity type and a first electrode electrically coupled to the III-nitride substrate. The semiconductor device also includes a III-nitride material having a second conductivity type coupled to the III-nitride substrate at a regrowth interface and a p-n junction disposed between the III-nitride substrate and the regrowth interface.