Abstract:
Disclosed are a method of forming vertical field effect transistor(s) and the resulting structure. In the method, five semiconductor layers are formed in a stack by epitaxial deposition. The first and fifth layers are one semiconductor material, the second and fourth layers are another and the third layer is yet another. The stack is patterned into fin(s). Vertical surfaces of the second and fourth layers of the fin(s) are etched to form upper and lower spacer cavities and these cavities are filled with upper and lower spacers. Vertical surfaces of the third layer of the fin(s) are etched to form a gate cavity and this cavity is filled with a gate. Since epitaxial deposition is used to form the semiconductor layers, the thicknesses of these layers and thereby the heights of the spacer cavities and gate cavity and the corresponding lengths of the spacers and gate can be precisely controlled.
Abstract:
At least one method, apparatus and system are disclosed for forming a fin field effect transistor (finFET) having doping region self-aligned with a fin reveal position. A plurality of fins of a transistor is formed. A nitride cap layer on the plurality of fins is formed. An N-type doped region in a first portion of the plurality of fins. A P-type doped region in a second portion of the plurality of fins. A shallow trench isolation (STI) fill process for depositing an STI material on the plurality of fins. A fin reveal process for removing the STI material to a predetermined level. A cap strip process for removing the nitride cap layer for forming a fin reveal position that is self-aligned with the P-type and N-type doped regions.
Abstract:
Devices and methods of fabricating vertical field effect transistors on semiconductor devices are provided. One intermediate semiconductor includes: a substrate, a bottom spacer layer above the substrate, a plurality of fins, wherein at least one fin is an n-fin and at least one fin is a p-fin; a high-k layer and a work function metal over the bottom spacer layer and around the plurality of fins; a top spacer above the high-k layer and the work function metal and surrounding a top area of the fins; a top source/drain structure over each fin; a dielectric capping layer over the top source/drain structure; a fill metal surrounding the work function metal; and a liner.
Abstract:
One illustrative device includes, among other things, at least one fin defined in a semiconductor substrate and a substantially vertical nanowire having an oval-shaped cross-section disposed on a top surface of the at least one fin.
Abstract:
A method includes forming at least one fin on a semiconductor substrate. A hard mask layer is formed above the fin. A first directed self-assembly material is formed above the hard mask layer. The hard mask layer is patterned using a portion of the first directed self-assembly material as an etch mask to expose a portion of the top surface of the fin. A substantially vertical nanowire is formed on the exposed top surface. At least one dimension of the substantially vertical nanowire is defined by an intrinsic pitch of the first directed self-assembly material.
Abstract:
One illustrative method disclosed herein includes, among other things, forming a layer of insulating material in the source/drain regions of the device, wherein the layer of insulating material has an upper surface that is substantially planar with an upper surface of a gate cap layer, recessing the layer of insulating material such that its recessed upper surface exposes a surface of the fin, performing another etching process to remove at least a portion of the fin and thereby define a recessed fin trench positioned above the recessed fin, and forming an epitaxial semiconductor material that is at least partially positioned in the recessed fin trench.
Abstract:
Embodiments herein provide approaches for device isolation in a complimentary metal-oxide fin field effect transistor. Specifically, a semiconductor device is formed with a retrograde doped layer over a substrate to minimize a source to drain punch-through leakage. A set of replacement fins is formed over the retrograde doped layer, each of the set of replacement fins comprising a high mobility channel material (e.g., silicon, or silicon-germanium). The retrograde doped layer may be formed using an in situ doping process or a counter dopant retrograde implant. The device may further include a carbon liner positioned between the retrograde doped layer and the set of replacement fins to prevent carrier spill-out to the replacement fins.
Abstract:
A method includes forming a first directed self-assembly material above a substrate. The substrate is patterned using the first directed self-assembly material to define at least one fin in the semiconductor substrate. A second directed self-assembly material is formed above the at least one fin to expose a top surface of the at least one fin. A substantially vertical nanowire is formed on the top surface of the at least one fin. At least a first dimension of the vertical nanowire is defined by an intrinsic pitch of the first directed self-assembly material and a second dimension of the vertical nanowire is defined by an intrinsic pitch of the second directed self-assembly material.
Abstract:
A method includes forming at least one fin on a semiconductor substrate. A hard mask layer is formed above the fin. A first directed self-assembly material is formed above the hard mask layer. The hard mask layer is patterned using a portion of the first directed self-assembly material as an etch mask to expose a portion of the top surface of the fin. A substantially vertical nanowire is formed on the exposed top surface. At least one dimension of the substantially vertical nanowire is defined by an intrinsic pitch of the first directed self-assembly material.
Abstract:
One illustrative method disclosed herein includes, among other things, performing at least one recess etching process such that a first portion of a high-k oxide gate insulation layer and a first portion of a metal oxide layer is positioned entirely within a first gate cavity and a second portion of the high-k oxide gate insulation layer, a conformal patterned masking layer and a second portion of the metal oxide layer is positioned entirely within a second gate cavity, performing at least one heating process to form a composite metal-high-k oxide alloy gate insulation layer in the first gate cavity, while preventing metal from the metal oxide material from being driven into the second portion of the high-k oxide gate insulation layer in the second gate cavity during the at least one heating process, and forming gate electrode structures in the gate cavities.