摘要:
A light emitting device includes a light emitting diode (LED), a concentrator element, such as a compound parabolic concentrator, and a wavelength converting material, such as a phosphor. The concentrator element receives light from the LED and emits the light from an exit surface, which is smaller than the entrance surface. The wavelength converting material is, e.g., disposed over the exit surface. The radiance of the light emitting diode is preserved or increased despite the isotropic re-emitted light by the wavelength converting material. In one embodiment, the polarized light from a polarized LED is provided to a polarized optical system, such as a microdisplay. In another embodiment, the orthogonally polarized light from two polarized LEDs is combined, e.g., via a polarizing beamsplitter, and is provided to non-polarized optical system, such as a microdisplay. If desired, a concentrator element may be disposed between the beamsplitter and the microdisplay.
摘要:
A white-light emitting diode (LED) is provided that emits primary light at a wavelength that is in the range of 485 to 515 nanometers (nm), which corresponds to a bluish-green color. A portion of the primary light is converted into a reddish-colored light that ranges in wavelength from approximately 600 to approximately 620 nm. At least a portion of the converted light combines with the unconverted portion of the primary light to produce white light. A number of phosphor-converting elements are suitable for use with the LED, including a resin admixed with a phosphor powder, epoxies admixed with a phosphor powder, organic luminescent dyes, phosphor-converting thin films and phosphor-converting substrates. Preferably, the phosphor-converting element is a resin admixed with a phosphor powder in such a manner that a portion of the primary light impinging on the resin is converted into the reddish-colored light and a portion of the primary light passes through the resin without being converted. The unconverted primary light and the phosphor-converted reddish-colored light combine to produce white light. The LED is mounted in a reflector cup that is filled with the phosphor-converting resin. The LED may be mounted in either a normal or flip-chip configuration within the reflector cup.
摘要:
Embodiments of the invention include a light emitting structure comprising a light emitting layer. A first luminescent material comprising a phosphor is disposed in a path of light emitted by the light emitting layer. A second luminescent material comprising a semiconductor is also disposed in a path of light emitted by the light emitting layer. The second luminescent material is configured to absorb light emitted by the light emitting layer and emit light of a different wavelength. In some embodiments, one of the first and second luminescent materials may be bonded to the semiconductor structure.
摘要:
A III-nitride device includes a first n-type layer, a first p-type layer, and an active region separating the first p-type layer and the first n-type layer. The device may include a second n-type layer and a tunnel junction separating the first and second n-type layers. First and second contacts are electrically connected to the first and second n-type layers. The first and second contacts are formed from the same material, a material with a reflectivity to light emitted by the active region greater than 75%. The device may include a textured layer disposed between the second n-type layer and the second contact or formed on a surface of a growth substrate opposite the device layers.
摘要:
A color, transmissive LCD uses a backlight that supplies a uniform blue light to the back of the liquid crystal layer in an LCD. The blue light, after being modulated by the liquid crystal layer, is then incident on the back surface of phosphor material located above the liquid crystal layer. A first phosphor material, when irradiated with the blue light, generates red light for the red pixel areas of the display, and a second phosphor material, when irradiated with the blue light, generates green light for the green pixel areas of the display. No phosphor is deposited over the blue pixel areas.
摘要:
A material such as a phosphor is optically coupled to a semiconductor structure including a light emitting region disposed between an n-type region and a p-type region, in order to efficiently extract light from the light emitting region into the phosphor. The phosphor may be phosphor grains in direct contact with a surface of the semiconductor structure, or a ceramic phosphor bonded to the semiconductor structure, or to a thin nucleation structure on which the semiconductor structure may be grown. The phosphor is preferably highly absorbent and highly efficient. When the semiconductor structure emits light into such a highly efficient, highly absorbent phosphor, the phosphor may efficiently extract light from the structure, reducing the optical losses present in prior art devices.
摘要:
In a device, a III-nitride light emitting layer is disposed between an n-type region and a p-type region. A first spacer layer, which is disposed between the n-type region and the light emitting layer, is doped to a dopant concentration between 6×1018 cm−3 and 5×1019 cm−3. A second spacer layer, which is disposed between the p-type region and the light emitting layer, is not intentionally doped or doped to a dopant concentration less than 6×1018 cm−3.
摘要翻译:在器件中,III族氮化物发光层设置在n型区域和p型区域之间。 设置在n型区域和发光层之间的第一间隔层被掺杂到6×10 18 cm -3和5×10 19 cm -3之间的掺杂剂浓度。 设置在p型区域和发光层之间的第二间隔层不是有意地掺杂或掺杂到小于6×10 18 cm -3的掺杂剂浓度。
摘要:
Overmolded lenses and certain fabrication techniques are described for LED structures. In one embodiment, thin YAG phosphor plates are formed and affixed over blue LEDs mounted on a submount wafer. A clear lens is then molded over each LED structure during a single molding process. The LEDs are then separated from the wafer. The molded lens may include red phosphor to generate a warmer white light. In another embodiment, the phosphor plates are first temporarily mounted on a backplate, and a lens containing a red phosphor is molded over the phosphor plates. The plates with overmolded lenses are removed from the backplate and affixed to the top of an energizing LED. A clear lens is then molded over each LED structure. The shape of the molded phosphor-loaded lenses may be designed to improve the color vs. angle uniformity. Multiple dies may be encapsulated by a single lens. In another embodiment, a prefabricated collimating lens is glued to the flat top of an overmolded lens.
摘要:
A III-nitride light emitting layer is disposed between an n-type region and a p-type region in a double heterostructure. At least a portion of the III-nitride light emitting layer has a graded composition.
摘要:
A material such as a phosphor is optically coupled to a semiconductor structure including a light emitting region disposed between an n-type region and a p-type region, in order to efficiently extract light from the light emitting region into the phosphor. The phosphor may be phosphor grains in direct contact with a surface of the semiconductor structure, or a ceramic phosphor bonded to the semiconductor structure, or to a thin nucleation structure on which the semiconductor structure may be grown. The phosphor is preferably highly absorbent and highly efficient. When the semiconductor structure emits light into such a highly efficient, highly absorbent phosphor, the phosphor may efficiently extract light from the structure, reducing the optical losses present in prior art devices.