Abstract:
A system for assigning a characterization and calibrating a parameter is disclosed. The system includes a frequency measurement circuit and a finite state machine. The frequency measurement circuit is configured to measure frequencies of an oscillatory signal and to generate a measurement signal including measured frequencies. The finite state machine is configured to control measurements by the frequency measurement circuit, to assign a characterization to a parameter based on the measurement signal, and to generate a calibration signal based on the characterized parameter.
Abstract:
A system for assigning a characterization and calibrating a parameter is disclosed. The system includes a frequency measurement circuit and a finite state machine. The frequency measurement circuit is configured to measure frequencies of an oscillatory signal and to generate a measurement signal including measured frequencies. The finite state machine is configured to control measurements by the frequency measurement circuit, to assign a characterization to a parameter based on the measurement signal, and to generate a calibration signal based on the characterized parameter.
Abstract:
A digital clock multiplier (DCM) circuit including: a plurality of power amplifier (PA) rows, wherein each PA row comprises a plurality of cascade switched capacitor power amplifiers (SCPA) unit cells configured to: receive a phase shift of a driving clock phase; and one or more processors configured to: disable of one or more of the plurality of cascade SCPA unit cells based on a frequency of the phase shift; generate an output signal for each of the cascade SCPA unit cells; and combine the output signal for each of the cascade SCPA unit cells to generate an PA row output signal.
Abstract:
Millimeter wave (mmWave) technology, apparatuses, and methods that relate to transceivers, receivers, and antenna structures for wireless communications are described. The various aspects include co-located millimeter wave (mmWave) and near-field communication (NFC) antennas, scalable phased array radio transceiver architecture (SPARTA), phased array distributed communication system with MIMO support and phase noise synchronization over a single coax cable, communicating RF signals over cable (RFoC) in a distributed phased array communication system, clock noise leakage reduction, IF-to-RF companion chip for backwards and forwards compatibility and modularity, on-package matching networks, 5G scalable receiver (Rx) architecture, among others.
Abstract:
An antenna array architecture is provided for beamforming applications. The antenna array architecture facilitates a compact and wideband dual-polarized beam-switching antenna array architecture, which may be implemented in a cost-effective multi-layer PCB or package. The antenna array architecture is implemented as part of a package substrate having a number of layers. Each of the layers comprises various conductive elements such as conductive segments and/or traces that are disposed thereon in accordance with the respective antenna components.
Abstract:
For example, an apparatus may include a baseband controller configured to control a plurality of dual-polarization Radio Heads (RHs) to communicate a Multiple-Input-Multiple-Output (MIMO) transmission, the baseband controller configured to control a first dual-polarization RH of the plurality of dual-polarization RHs to communicate a first spatial stream of the MIMO transmission with a horizontal-polarization via one or more first dual-polarization antenna elements of the first dual-polarization RH, and to control a second dual-polarization RH of the plurality of dual-polarization RHs to communicate a second spatial stream of the MIMO transmission with a vertical-polarization via one or more second dual-polarization antenna elements of the second dual-polarization RH.
Abstract:
Techniques are described related to digital radio control, partitioning, and operation. The various techniques described herein enable high-frequency local oscillator signal generation and frequency multiplication using radio-frequency (RF) digital to analog converters (RFDACs). The use of these components and others described throughout this disclosure allow for the realization of various improvements. For example, digital, analog, and hybrid beamforming control are implemented and the newly-enabled digital radio architecture partitioning enables radio components to be pushed to the radio head, allowing for the omission of high frequency cables and/or connectors.
Abstract:
Techniques are described related to digital radio control, partitioning, and operation. The various techniques described herein enable high-frequency local oscillator signal generation and frequency multiplication using radio-frequency (RF) digital to analog converters (RFDACs). The use of these components and others described throughout this disclosure allow for the realization of various improvements. For example, digital, analog, and hybrid beamforming control are implemented and the newly-enabled digital radio architecture partitioning enables radio components to be pushed to the radio head, allowing for the omission of high frequency cables and/or connectors.
Abstract:
A wireless communication device can include an antenna configured to sense a radio frequency (RF) signal. The wireless communication device can include signal estimation circuitry configured to generate estimates of amplitude and frequency for unmodulated spurs within the RF signal. The wireless communication device can further include multi-tone generator circuitry coupled to the signal estimation circuitry and configured to generate a composite spur cancellation signal based on the estimates of amplitude and frequency for unmodulated spurs within the RF signal. The wireless communication device can further include adder circuitry configured to subtract the spur cancellation signal from the RF signal to generate a spur cancelled signal.
Abstract:
Techniques are described related to digital radio control and operation. The various techniques described herein enable high-frequency local oscillator (LO) signal generation using injection locked cock multipliers (ILCMs). The techniques also include the use of LO signals for carrier aggregation applications for phased array front ends. Furthermore, the disclosed techniques include the use of array element-level control using per-chain DC-DC converters. Still further, the disclosed techniques include the use of adaptive spatial filtering and optimal combining of analog-to-digital converters (ADCs) to maximize dynamic range in digital beamforming systems.