摘要:
A structure including a conductive, preferably metallic conductive layer is provided with leads on a bottom surface. The leads have fixed ends permanently attached to the structure and free ends detachable from the structure. The structure is engaged with a microelectronic element such as a semiconductor chip or wafer, the free ends of the leads are bonded to the microelectronic element, and the leads are bent by moving the structure relative to the microelectronic element. Portions of the conductive layer are removed, leaving residual portions of the conductive layer as separate electrical terminals connected to at least some of the leads. The conductive layer mechanically stabilizes the structure before bonding, and facilitates precise registration of the leads with the microelectronic element. After the conductive layer is converted to separate terminals, it does not impair free movement of the terminals relative to the microelectronic element.
摘要:
A substantially continuous layer of a first metal such as copper is provided with strips of a second metal such as gold by selective electroplating of the second metal, or by applying separately formed strips such as lengths of wire. A dielectric support layer is provided in contact with the first metal layer, and the first metal layer is etched to leave strips of the first metal contiguous with the strips of the second metal, thereby providing composite leads with the first and second metal strips connected in series. The process provides simple and economical methods of making microelectronic connection components with leads having a flexible, fatigue resistant lead portion formed from a precious metal. The leads may incorporate sections of round cross-sectional shape to facilitate engagement by a bonding tool during use of the component.
摘要:
A probe card for testing electronic elements includes a layer of dielectric material provided with a plurality of cavities supported on a substrate. A mass of fusible conductive material having a melting temperature below about 150° C. is disposed in each of said cavities, the dielectric material electrically insulating the masses of fusible conductive material from one another. A probe tip of conductive material having a melting temperature greater than about 150° C. is provided at one common end of each of the masses of fusible conductive material. The probe contacts are separated from an adjacent probe contact by at least one channel formed with the layer of dielectric material.
摘要:
A method of encapsulating a microelectronic assembly includes providing one or more microelectronic assemblies having one or more elements defining exterior surfaces and an array of terminals exposed at the exterior surfaces, the one or more elements defining one or more apertures through the exterior surfaces. A layer of a curable barrier material is then provided on a supporting element. The barrier layer has openings therein in a pattern corresponding to the array of terminals on the one or more microelectronic assemblies. The supporting element and the one or more microelectronic elements are then assembled together so that the layer of barrier material contacts the exterior surfaces and covers the apertures and so that the openings in the layer of barrier material are aligned with the terminals. The barrier material is then cured while in contact with the exterior surfaces to thereby form a barrier layer covering the apertures. Next, a curable liquid encapsulant is applied to the microelectronic assemblies, whereby the barrier layer prevents the curable liquid encapsulant from flowing through the apertures, and the encapsulant is cured. The barrier layer and the supporting element cooperatively surround the terminals exposed at the exterior surfaces to protect the terminals from contaminants.
摘要:
A method of encapsulating a microelectronic assembly includes providing one or more microelectronic assemblies having one or more elements defining exterior surfaces and an array of terminals exposed at the exterior surfaces, the one or more elements defining one or more apertures through the exterior surfaces. A layer of a curable barrier material is then provided on a supporting element. The barrier layer has openings therein in a pattern corresponding to the array of terminals on the one or more microelectronic assemblies. The supporting element and the one or more microelectronic elements are then assembled together so that the layer of barrier material contacts the exterior surfaces and covers the apertures and so that the openings in the layer of barrier material are aligned with the terminals. The barrier material is then cured while in contact with the exterior surfaces to thereby form a barrier layer covering the apertures. Next, a curable liquid encapsulant is applied to the microelectronic assemblies, whereby the barrier layer prevents the curable liquid encapsulant from flowing through the apertures, and the encapsulant is cured. The barrier layer and the supporting element cooperatively surround the terminals exposed at the exterior surfaces to protect the terminals from contaminants.
摘要:
A method of encapsulating a microelectronic assembly comprises providing a microelectronic assembly having an element defining exterior surfaces and an array of terminals exposed at the exterior surfaces. The element defines an aperture through the exterior surfaces. A layer of a curable barrier material is screen printed onto a supporting element. The supporting element is assembled with the microelectronic assembly so that the layer of curable barrier material contacts the exterior surfaces and covers said one or more apertures. An encapsulant is applied to the microelectronic assembly.
摘要:
A method of encapsulating a microelectronic assembly comprises providing a microelectronic assembly having an element defining exterior surfaces and an array of terminals exposed at the exterior surfaces. The element defines an aperture through the exterior surfaces. A layer of a curable barrier material is screen printed onto a supporting element. The supporting element is assembled with the microelectronic assembly so that the layer of curable barrier material contacts the exterior surfaces and covers said one or more apertures. An encapsulant is applied to the microelectronic assembly.
摘要:
A sheet such as a polymeric dielectric has elongated lead regions partially separated from the main region of the sheet by gaps in the sheet, and has conductors extending along the lead regions. The lead regions are connected to contacts on a microelectronic element, and the microelectronic element is moved away from the main region of the sheet, thereby bending the lead regions downwardly to form leads projecting from the main region of the sheet.
摘要:
A method of making a microelectronic assembly includes juxtaposing a first element, such as a dielectric sheet having conductive leads thereon with a second element, such as a semiconductor chip, having contact thereon, and wire bonding the conductive leads on the first element to the contacts on the second element so that elongated bonding wires extend between the conductive leads and the contacts. After the wire bonding step, the first and second elements are moved through a pre-selected displacement relative to one another so as to deform the bonding wires. A flowable dielectric material may be introduced between the first and second elements and around the bonding wires during or after the moving step. The flowable material may be cured to form an encapsulant around at least a portion of the bonding wires.
摘要:
A sheet such as a polymeric dielectric has elongated lead regions partially separated from the main region of the sheet by gaps in the sheet, and has conductors extending along the lead regions. The lead regions are connected to contacts on a microelectronic element, and the microelectronic element is moved away from the main region of the sheet, thereby bending the lead regions downwardly to form leads projecting from the main region of the sheet.