Abstract:
An electronic device includes a structure. The structure includes a first set of through glass vias (TGVs) and a second set of TGVs. The first set of TGVs includes a first via and the second set of TGVs includes a second via. The first via has a different cross-sectional shape than the second via.
Abstract:
In a particular embodiment, a device includes a substrate, a via that extends at least partially through the substrate, and a capacitor. A dielectric of the capacitor is located between the via and a plate of the capacitor, and the plate of the capacitor is external to the substrate and within the device.
Abstract:
One feature pertains to a multi-layer package substrate of an integrated circuit package that comprises a discrete circuit component (DCC) having at least one electrode. The DCC is embedded within an insulator layer, and a via coupling component electrically couples to the electrode. A first portion of the via coupling component extends beyond a first edge of the electrode, and a plurality of vias each having a first end couple to the first via coupling component. At least a first via of the plurality of vias couples to the first portion of the via coupling component that extends beyond the first edge of the electrode. Moreover, the plurality of vias each have a second end that electrically couple to a first outer metal layer, and at least a second portion of the via coupling component is positioned within a first inner metal layer.
Abstract:
Base pads are spaced by a pitch on a support surface. Conducting members, optionally Cu or other metal pillars, extend up from the base pads to top pads. A top pad interconnector connects the top pads in a configuration establishing an inductor current path between the base pads.
Abstract:
In an illustrative example, an apparatus includes a passive-on-glass (POG) device integrated within a glass substrate. The apparatus further includes a semiconductor die integrated within the glass substrate.
Abstract:
A semiconductor device according to some examples of the disclosure may include a package substrate, a semiconductor die coupled to one side of the package substrate with a first set of contacts on an active side of the semiconductor die and coupled to a plurality of solder prints with a second set of contacts on a back side of the semiconductor die. The semiconductor die may include a plurality of vias connecting the first set of contacts to the second set of contacts and configured to allow heat to be transferred from the active side of the die to the plurality of solder prints for a shorter heat dissipation path.
Abstract:
An integrated radio frequency (RF) circuit structure may include a resistive substrate material and a switch. The switch may be arranged in a silicon on insulator (SOI) layer supported by the resistive substrate material. The integrated RF circuit structure may also include an isolation layer coupled to the SOI layer. The integrated RF circuit structure may further include a filter, composed of inductors and capacitors. The filter may be arranged on a surface of the integrated RF circuit structure, opposite the resistive substrate material. In addition, the switch may be arranged on a first surface of the isolation layer.
Abstract:
Passive device assembly for accurate ground plane control is disclosed. A passive device assembly includes a device substrate conductively coupled to a ground plane separation control substrate. A passive device disposed on a lower surface of the device substrate is separated from an embedded ground plane mounted on a lower surface of the ground plane separation control substrate by a separation distance. The separation distance is accurately controlled to minimize undesirable interference that may occur to the passive device. The separation distance is provided inside the passive device assembly. Conductive mounting pads are disposed on the lower surface of the ground plane separation control substrate to support accurate alignment of the passive device assembly on a circuit board. By providing sufficient separation distance inside the passive device assembly, the passive device assembly can be precisely mounted onto any circuit board regardless of specific design and layout of the circuit board.
Abstract:
The present disclosure provides integrated circuit apparatuses and methods for manufacturing integrated circuit apparatuses. An integrated circuit apparatus may include a first insulator, the first insulator being substantially planar and having a first top surface and a first bottom surface opposite the first top surface, a first conductor disposed on the first insulator, a second insulator, the second insulator being substantially planar and having a second top surface and a second bottom surface opposite the second top surface, a second conductor disposed on the second insulator, and a dielectric layer disposed between the first bottom conductor of the first insulator and the second top conductor of the second insulator.
Abstract:
The present disclosure provides circuits and methods for fabricating circuits. A circuit may include an insulator having a first surface, a second surface, a periphery, a first subset of circuit elements disposed on the first surface, a second subset of circuit elements disposed on the second surface, and at least one conductive sidewall disposed on the periphery, wherein the conductive sidewall electrically couples the first subset of circuit elements to the second subset of circuit elements.