摘要:
An energy control method for a inductive conversion device comprising: determination of individual error of multiple output voltages; determination of peak current based on the errors, determination of total energy through the peak current and charging to at least one inductor according to the peak current, whereas the inductor will store the total energy.
摘要:
A method is disclosed for forming a patterned thick metallization atop a semiconductor chip wafer. The method includes fabricating a nearly complete semiconductor chip wafer ready for metallization; depositing a bottom metal layer of sub-thickness TK1 together with its built-in alignment mark using a hot metal process; depositing a top metal layer of sub-thickness TK2 using a cold metal process thus forming a stacked thick metallization of total thickness TK=TK1+TK2; then, use the built-in alignment mark as reference, patterning the stacked thick metallization. A patterned thick metallization is thus formed with the advantages of better metal step coverage owing to the superior step coverage nature of the hot metal process as compared to the cold metal process; and lower alignment error rate owing to the lower alignment signal noise nature of the cold metal process as compared to the hot metal process.
摘要:
A solder-top enhanced semiconductor device is proposed for packaging. The solder-top device includes a device die with a top metal layer patterned into contact zones and contact enhancement zones. At least one contact zone is electrically connected to at least one contact enhancement zone. Atop each contact enhancement zone is a solder layer for an increased composite thickness thus lowered parasitic impedance. Where the top metal material can not form a uniform good electrical bond with the solder material, the device die further includes an intermediary layer sandwiched between and forming a uniform electrical bond with the top metal layer and the solder layer. A method for making the solder-top device includes: a) Lithographically patterning the top metal layer into the contact zones and the contact enhancement zones. b) Forming a solder layer atop each of the contact enhancement zones using a stencil process for an increased composite thickness.
摘要:
A virtually substrate-less composite power semiconductor device (VSLCPSD) and method are disclosed. The VSLCPSD has a power semiconductor device (PSD), a front-face device carrier (FDC) made out of a carrier material and an intervening bonding layer (IBL). Both carrier and IBL material can be conductive or non-conductive. The PSD has back substrate portion, front semiconductor device portion with patterned front-face device metallization pads and a virtually diminishing thickness TPSD. The FDC has patterned back-face carrier metallizations contacting the front-face device metallization pads, patterned front-face carrier metallization pads and numerous parallelly connected through-carrier conductive vias respectively connecting the back-face carrier metallizations to the front-face carrier metallization pads. The FDC thickness TFDC is large enough to provide structural rigidity to the VSLCPSD. The diminishing thickness TPSD effects a low back substrate resistance and the through-carrier conductive vias effect a low front-face contact resistance to the front-face device metallization pads.
摘要:
A package structure for DC-DC converter disclosed herein can reduce the number of encapsulated elements as a low-side MOSFET chip can be stacked above the high-side MOSFET chip of a first die pad, through die pads of different thicknesses or interposers with joint parts of different thicknesses; moreover, it further reduces the size of the entire semiconductor package as a number of bond wires are contained in the space between the controller and the low-side MOSFET chip. Moreover, electrical connection between the top source electrode pin and the bottom source electrode pin of the low-side MOSFET chip is realized with a metal joint plate, such that when the DC-DC converter is sealed with plastic, the metal joint plate can be exposed outside to improve the thermal performance and effectively reduce the thickness of the semiconductor package.
摘要:
A heterostructure field effect transistor (HFET) gallium nitride (GaN) semiconductor power device comprises a hetero-junction structure comprises a first semiconductor layer interfacing a second semiconductor layer of two different band gaps thus generating an interface layer as a two-dimensional electron gas (2DEG) layer. The power device further comprises a source electrode and a drain electrode disposed on two opposite sides of a gate electrode disposed on top of the hetero-junction structure for controlling a current flow between the source and drain electrodes in the 2DEG layer. The power device further includes a floating gate located between the gate electrode and hetero-junction structure, wherein the gate electrode is insulated from the floating gate with an insulation layer and wherein the floating gate is disposed above and padded with a thin insulation layer from the hetero-junction structure and wherein the floating gate is charged for continuously applying a voltage to the 2DEG layer to pinch off the current flowing in the 2DEG layer between the source and drain electrodes whereby the HFET semiconductor power device is a normally off device.
摘要:
A semiconductor device embodiment includes a substrate, an active gate trench in the substrate, and an asymmetric trench in the substrate. The asymmetric trench has a first trench wall and a second trench wall, the first trench wall is lined with oxide having a first thickness, and the second trench wall is lined with oxide having a second thickness that is different from the first thickness. Another semiconductor device embodiment includes a substrate, an active gate trench in the substrate; and a source polysilicon pickup trench in the substrate. The source polysilicon pickup trench includes a polysilicon electrode, and top surface of the polysilicon electrode is below a bottom of a body region. Another semiconductor device includes a substrate, an active gate trench in the substrate, the active gate trench has a first top gate electrode and a first bottom source electrode, and a gate runner trench comprising a second top gate electrode and a second bottom source electrode. The second top gate electrode is narrower than the second bottom source electrode.
摘要:
A low voltage transient voltage suppressing (TVS) device supported on a semiconductor substrate supporting an epitaxial layer thereon. The TVS device further includes a bottom-source metal oxide semiconductor field effect transistor (BS-MOSFET) comprises a trench gate surrounded by a drain region encompassed in a body region disposed near a top surface of the semiconductor substrate wherein the drain region interfaces with the body region constituting a junction diode and the drain region encompassed in the body region on top of the epitaxial layer constituting a bipolar transistor with a top electrode disposed on the top surface of the semiconductor functioning as a drain/collector terminal and a bottom electrode disposed on a bottom surface of the semiconductor substrate functioning as a source/emitter electrode. The body regions further comprises a surface body contact region electrically connected to a body-to-source short-connection thus connecting the body region to the bottom electrode functioning as the source/emitter terminal. The gate may be shorted to the drain for configuring the BS-MOSFET transistor into a two terminal device with a gate-to-source voltage equal to a drain-to-source voltage. The drain/collector/cathode terminal disposed on top of the trench gate turns on the BS-MOSFET upon application of a threshold voltage of the BS-MOSFET thus triggering the bipolar transistor for clamping and suppressing a transient voltage substantially near a threshold voltage of the BS-MOSFET.
摘要:
A gallium nitride based semiconductor diode includes a substrate, a GaN layer formed on the substrate, an AlGaN layer formed on the GaN layer where the GaN layer and the AlGaN layer forms a cathode region of the diode, a metal layer formed on the AlGaN layer forming a Schottky junction therewith where the metal layer forms an anode electrode of the diode, and a high barrier region formed in the top surface of the AlGaN layer and positioned under an edge of the metal layer. The high barrier region has a higher bandgap energy than the AlGaN layer or being more resistive than the AlGaN layer.
摘要:
A vertical transient voltage suppressing (TVS) device includes a semiconductor substrate of a first conductivity type where the substrate is heavily doped, an epitaxial layer of the first conductivity type formed on the substrate where the epitaxial layer has a first thickness, and a base region of a second conductivity type formed in the epitaxial layer where the base region is positioned in a middle region of the epitaxial layer. The base region and the epitaxial layer provide a substantially symmetrical vertical doping profile on both sides of the base region. In one embodiment, the base region is formed by high energy implantation. In another embodiment, the base region is formed as a buried layer. The doping concentrations of the epitaxial layer and the base region are selected to configure the TVS device as a punchthrough diode based TVS or an avalanche mode TVS.